| Step |
Hyp |
Ref |
Expression |
| 1 |
|
igamval |
|- ( A e. CC -> ( 1/_G ` A ) = if ( A e. ( ZZ \ NN ) , 0 , ( 1 / ( _G ` A ) ) ) ) |
| 2 |
|
0cnd |
|- ( ( A e. CC /\ A e. ( ZZ \ NN ) ) -> 0 e. CC ) |
| 3 |
|
eldif |
|- ( A e. ( CC \ ( ZZ \ NN ) ) <-> ( A e. CC /\ -. A e. ( ZZ \ NN ) ) ) |
| 4 |
|
gamcl |
|- ( A e. ( CC \ ( ZZ \ NN ) ) -> ( _G ` A ) e. CC ) |
| 5 |
|
gamne0 |
|- ( A e. ( CC \ ( ZZ \ NN ) ) -> ( _G ` A ) =/= 0 ) |
| 6 |
4 5
|
reccld |
|- ( A e. ( CC \ ( ZZ \ NN ) ) -> ( 1 / ( _G ` A ) ) e. CC ) |
| 7 |
3 6
|
sylbir |
|- ( ( A e. CC /\ -. A e. ( ZZ \ NN ) ) -> ( 1 / ( _G ` A ) ) e. CC ) |
| 8 |
2 7
|
ifclda |
|- ( A e. CC -> if ( A e. ( ZZ \ NN ) , 0 , ( 1 / ( _G ` A ) ) ) e. CC ) |
| 9 |
1 8
|
eqeltrd |
|- ( A e. CC -> ( 1/_G ` A ) e. CC ) |