| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iihalf1cnOLD.1 |  |-  J = ( ( topGen ` ran (,) ) |`t ( 0 [,] ( 1 / 2 ) ) ) | 
						
							| 2 |  | eqid |  |-  ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) | 
						
							| 3 |  | dfii2 |  |-  II = ( ( topGen ` ran (,) ) |`t ( 0 [,] 1 ) ) | 
						
							| 4 |  | 0re |  |-  0 e. RR | 
						
							| 5 |  | halfre |  |-  ( 1 / 2 ) e. RR | 
						
							| 6 |  | iccssre |  |-  ( ( 0 e. RR /\ ( 1 / 2 ) e. RR ) -> ( 0 [,] ( 1 / 2 ) ) C_ RR ) | 
						
							| 7 | 4 5 6 | mp2an |  |-  ( 0 [,] ( 1 / 2 ) ) C_ RR | 
						
							| 8 | 7 | a1i |  |-  ( T. -> ( 0 [,] ( 1 / 2 ) ) C_ RR ) | 
						
							| 9 |  | unitssre |  |-  ( 0 [,] 1 ) C_ RR | 
						
							| 10 | 9 | a1i |  |-  ( T. -> ( 0 [,] 1 ) C_ RR ) | 
						
							| 11 |  | iihalf1 |  |-  ( x e. ( 0 [,] ( 1 / 2 ) ) -> ( 2 x. x ) e. ( 0 [,] 1 ) ) | 
						
							| 12 | 11 | adantl |  |-  ( ( T. /\ x e. ( 0 [,] ( 1 / 2 ) ) ) -> ( 2 x. x ) e. ( 0 [,] 1 ) ) | 
						
							| 13 | 2 | cnfldtopon |  |-  ( TopOpen ` CCfld ) e. ( TopOn ` CC ) | 
						
							| 14 | 13 | a1i |  |-  ( T. -> ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) | 
						
							| 15 |  | 2cnd |  |-  ( T. -> 2 e. CC ) | 
						
							| 16 | 14 14 15 | cnmptc |  |-  ( T. -> ( x e. CC |-> 2 ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 17 | 14 | cnmptid |  |-  ( T. -> ( x e. CC |-> x ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 18 | 2 | mulcn |  |-  x. e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) | 
						
							| 19 | 18 | a1i |  |-  ( T. -> x. e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 20 | 14 16 17 19 | cnmpt12f |  |-  ( T. -> ( x e. CC |-> ( 2 x. x ) ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 21 | 2 1 3 8 10 12 20 | cnmptre |  |-  ( T. -> ( x e. ( 0 [,] ( 1 / 2 ) ) |-> ( 2 x. x ) ) e. ( J Cn II ) ) | 
						
							| 22 | 21 | mptru |  |-  ( x e. ( 0 [,] ( 1 / 2 ) ) |-> ( 2 x. x ) ) e. ( J Cn II ) |