Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|- ( k = 1 -> ( 4 ^ k ) = ( 4 ^ 1 ) ) |
2 |
1
|
oveq1d |
|- ( k = 1 -> ( ( 4 ^ k ) + 5 ) = ( ( 4 ^ 1 ) + 5 ) ) |
3 |
2
|
breq2d |
|- ( k = 1 -> ( 3 || ( ( 4 ^ k ) + 5 ) <-> 3 || ( ( 4 ^ 1 ) + 5 ) ) ) |
4 |
|
oveq2 |
|- ( k = n -> ( 4 ^ k ) = ( 4 ^ n ) ) |
5 |
4
|
oveq1d |
|- ( k = n -> ( ( 4 ^ k ) + 5 ) = ( ( 4 ^ n ) + 5 ) ) |
6 |
5
|
breq2d |
|- ( k = n -> ( 3 || ( ( 4 ^ k ) + 5 ) <-> 3 || ( ( 4 ^ n ) + 5 ) ) ) |
7 |
|
oveq2 |
|- ( k = ( n + 1 ) -> ( 4 ^ k ) = ( 4 ^ ( n + 1 ) ) ) |
8 |
7
|
oveq1d |
|- ( k = ( n + 1 ) -> ( ( 4 ^ k ) + 5 ) = ( ( 4 ^ ( n + 1 ) ) + 5 ) ) |
9 |
8
|
breq2d |
|- ( k = ( n + 1 ) -> ( 3 || ( ( 4 ^ k ) + 5 ) <-> 3 || ( ( 4 ^ ( n + 1 ) ) + 5 ) ) ) |
10 |
|
oveq2 |
|- ( k = N -> ( 4 ^ k ) = ( 4 ^ N ) ) |
11 |
10
|
oveq1d |
|- ( k = N -> ( ( 4 ^ k ) + 5 ) = ( ( 4 ^ N ) + 5 ) ) |
12 |
11
|
breq2d |
|- ( k = N -> ( 3 || ( ( 4 ^ k ) + 5 ) <-> 3 || ( ( 4 ^ N ) + 5 ) ) ) |
13 |
|
3z |
|- 3 e. ZZ |
14 |
|
4z |
|- 4 e. ZZ |
15 |
|
1nn0 |
|- 1 e. NN0 |
16 |
|
zexpcl |
|- ( ( 4 e. ZZ /\ 1 e. NN0 ) -> ( 4 ^ 1 ) e. ZZ ) |
17 |
14 15 16
|
mp2an |
|- ( 4 ^ 1 ) e. ZZ |
18 |
|
5nn |
|- 5 e. NN |
19 |
18
|
nnzi |
|- 5 e. ZZ |
20 |
|
zaddcl |
|- ( ( ( 4 ^ 1 ) e. ZZ /\ 5 e. ZZ ) -> ( ( 4 ^ 1 ) + 5 ) e. ZZ ) |
21 |
17 19 20
|
mp2an |
|- ( ( 4 ^ 1 ) + 5 ) e. ZZ |
22 |
13 13 21
|
3pm3.2i |
|- ( 3 e. ZZ /\ 3 e. ZZ /\ ( ( 4 ^ 1 ) + 5 ) e. ZZ ) |
23 |
|
3t3e9 |
|- ( 3 x. 3 ) = 9 |
24 |
|
4nn0 |
|- 4 e. NN0 |
25 |
24
|
numexp1 |
|- ( 4 ^ 1 ) = 4 |
26 |
25
|
oveq1i |
|- ( ( 4 ^ 1 ) + 5 ) = ( 4 + 5 ) |
27 |
|
5cn |
|- 5 e. CC |
28 |
|
4cn |
|- 4 e. CC |
29 |
|
5p4e9 |
|- ( 5 + 4 ) = 9 |
30 |
27 28 29
|
addcomli |
|- ( 4 + 5 ) = 9 |
31 |
26 30
|
eqtri |
|- ( ( 4 ^ 1 ) + 5 ) = 9 |
32 |
23 31
|
eqtr4i |
|- ( 3 x. 3 ) = ( ( 4 ^ 1 ) + 5 ) |
33 |
|
dvds0lem |
|- ( ( ( 3 e. ZZ /\ 3 e. ZZ /\ ( ( 4 ^ 1 ) + 5 ) e. ZZ ) /\ ( 3 x. 3 ) = ( ( 4 ^ 1 ) + 5 ) ) -> 3 || ( ( 4 ^ 1 ) + 5 ) ) |
34 |
22 32 33
|
mp2an |
|- 3 || ( ( 4 ^ 1 ) + 5 ) |
35 |
13
|
a1i |
|- ( ( n e. NN /\ 3 || ( ( 4 ^ n ) + 5 ) ) -> 3 e. ZZ ) |
36 |
|
4nn |
|- 4 e. NN |
37 |
36
|
a1i |
|- ( n e. NN -> 4 e. NN ) |
38 |
|
nnnn0 |
|- ( n e. NN -> n e. NN0 ) |
39 |
37 38
|
nnexpcld |
|- ( n e. NN -> ( 4 ^ n ) e. NN ) |
40 |
39
|
nnzd |
|- ( n e. NN -> ( 4 ^ n ) e. ZZ ) |
41 |
40
|
adantr |
|- ( ( n e. NN /\ 3 || ( ( 4 ^ n ) + 5 ) ) -> ( 4 ^ n ) e. ZZ ) |
42 |
19
|
a1i |
|- ( ( n e. NN /\ 3 || ( ( 4 ^ n ) + 5 ) ) -> 5 e. ZZ ) |
43 |
41 42
|
zaddcld |
|- ( ( n e. NN /\ 3 || ( ( 4 ^ n ) + 5 ) ) -> ( ( 4 ^ n ) + 5 ) e. ZZ ) |
44 |
14
|
a1i |
|- ( ( n e. NN /\ 3 || ( ( 4 ^ n ) + 5 ) ) -> 4 e. ZZ ) |
45 |
43 44
|
zmulcld |
|- ( ( n e. NN /\ 3 || ( ( 4 ^ n ) + 5 ) ) -> ( ( ( 4 ^ n ) + 5 ) x. 4 ) e. ZZ ) |
46 |
35 42
|
zmulcld |
|- ( ( n e. NN /\ 3 || ( ( 4 ^ n ) + 5 ) ) -> ( 3 x. 5 ) e. ZZ ) |
47 |
|
simpr |
|- ( ( n e. NN /\ 3 || ( ( 4 ^ n ) + 5 ) ) -> 3 || ( ( 4 ^ n ) + 5 ) ) |
48 |
35 43 44 47
|
dvdsmultr1d |
|- ( ( n e. NN /\ 3 || ( ( 4 ^ n ) + 5 ) ) -> 3 || ( ( ( 4 ^ n ) + 5 ) x. 4 ) ) |
49 |
|
dvdsmul1 |
|- ( ( 3 e. ZZ /\ 5 e. ZZ ) -> 3 || ( 3 x. 5 ) ) |
50 |
13 19 49
|
mp2an |
|- 3 || ( 3 x. 5 ) |
51 |
50
|
a1i |
|- ( ( n e. NN /\ 3 || ( ( 4 ^ n ) + 5 ) ) -> 3 || ( 3 x. 5 ) ) |
52 |
35 45 46 48 51
|
dvds2subd |
|- ( ( n e. NN /\ 3 || ( ( 4 ^ n ) + 5 ) ) -> 3 || ( ( ( ( 4 ^ n ) + 5 ) x. 4 ) - ( 3 x. 5 ) ) ) |
53 |
39
|
nncnd |
|- ( n e. NN -> ( 4 ^ n ) e. CC ) |
54 |
27
|
a1i |
|- ( n e. NN -> 5 e. CC ) |
55 |
28
|
a1i |
|- ( n e. NN -> 4 e. CC ) |
56 |
53 54 55
|
adddird |
|- ( n e. NN -> ( ( ( 4 ^ n ) + 5 ) x. 4 ) = ( ( ( 4 ^ n ) x. 4 ) + ( 5 x. 4 ) ) ) |
57 |
56
|
oveq1d |
|- ( n e. NN -> ( ( ( ( 4 ^ n ) + 5 ) x. 4 ) - ; 1 5 ) = ( ( ( ( 4 ^ n ) x. 4 ) + ( 5 x. 4 ) ) - ; 1 5 ) ) |
58 |
|
3cn |
|- 3 e. CC |
59 |
|
5t3e15 |
|- ( 5 x. 3 ) = ; 1 5 |
60 |
27 58 59
|
mulcomli |
|- ( 3 x. 5 ) = ; 1 5 |
61 |
60
|
a1i |
|- ( n e. NN -> ( 3 x. 5 ) = ; 1 5 ) |
62 |
61
|
oveq2d |
|- ( n e. NN -> ( ( ( ( 4 ^ n ) + 5 ) x. 4 ) - ( 3 x. 5 ) ) = ( ( ( ( 4 ^ n ) + 5 ) x. 4 ) - ; 1 5 ) ) |
63 |
55 38
|
expp1d |
|- ( n e. NN -> ( 4 ^ ( n + 1 ) ) = ( ( 4 ^ n ) x. 4 ) ) |
64 |
|
ax-1cn |
|- 1 e. CC |
65 |
|
3p1e4 |
|- ( 3 + 1 ) = 4 |
66 |
58 64 65
|
addcomli |
|- ( 1 + 3 ) = 4 |
67 |
66
|
eqcomi |
|- 4 = ( 1 + 3 ) |
68 |
67
|
oveq1i |
|- ( 4 - 3 ) = ( ( 1 + 3 ) - 3 ) |
69 |
64 58
|
pncan3oi |
|- ( ( 1 + 3 ) - 3 ) = 1 |
70 |
68 69
|
eqtri |
|- ( 4 - 3 ) = 1 |
71 |
70
|
oveq2i |
|- ( 5 x. ( 4 - 3 ) ) = ( 5 x. 1 ) |
72 |
27 28 58
|
subdii |
|- ( 5 x. ( 4 - 3 ) ) = ( ( 5 x. 4 ) - ( 5 x. 3 ) ) |
73 |
27
|
mulid1i |
|- ( 5 x. 1 ) = 5 |
74 |
71 72 73
|
3eqtr3ri |
|- 5 = ( ( 5 x. 4 ) - ( 5 x. 3 ) ) |
75 |
59
|
eqcomi |
|- ; 1 5 = ( 5 x. 3 ) |
76 |
75
|
oveq2i |
|- ( ( 5 x. 4 ) - ; 1 5 ) = ( ( 5 x. 4 ) - ( 5 x. 3 ) ) |
77 |
74 76
|
eqtr4i |
|- 5 = ( ( 5 x. 4 ) - ; 1 5 ) |
78 |
77
|
a1i |
|- ( n e. NN -> 5 = ( ( 5 x. 4 ) - ; 1 5 ) ) |
79 |
63 78
|
oveq12d |
|- ( n e. NN -> ( ( 4 ^ ( n + 1 ) ) + 5 ) = ( ( ( 4 ^ n ) x. 4 ) + ( ( 5 x. 4 ) - ; 1 5 ) ) ) |
80 |
53 55
|
mulcld |
|- ( n e. NN -> ( ( 4 ^ n ) x. 4 ) e. CC ) |
81 |
54 55
|
mulcld |
|- ( n e. NN -> ( 5 x. 4 ) e. CC ) |
82 |
|
5nn0 |
|- 5 e. NN0 |
83 |
15 82
|
deccl |
|- ; 1 5 e. NN0 |
84 |
83
|
nn0cni |
|- ; 1 5 e. CC |
85 |
84
|
a1i |
|- ( n e. NN -> ; 1 5 e. CC ) |
86 |
80 81 85
|
addsubassd |
|- ( n e. NN -> ( ( ( ( 4 ^ n ) x. 4 ) + ( 5 x. 4 ) ) - ; 1 5 ) = ( ( ( 4 ^ n ) x. 4 ) + ( ( 5 x. 4 ) - ; 1 5 ) ) ) |
87 |
79 86
|
eqtr4d |
|- ( n e. NN -> ( ( 4 ^ ( n + 1 ) ) + 5 ) = ( ( ( ( 4 ^ n ) x. 4 ) + ( 5 x. 4 ) ) - ; 1 5 ) ) |
88 |
57 62 87
|
3eqtr4rd |
|- ( n e. NN -> ( ( 4 ^ ( n + 1 ) ) + 5 ) = ( ( ( ( 4 ^ n ) + 5 ) x. 4 ) - ( 3 x. 5 ) ) ) |
89 |
88
|
adantr |
|- ( ( n e. NN /\ 3 || ( ( 4 ^ n ) + 5 ) ) -> ( ( 4 ^ ( n + 1 ) ) + 5 ) = ( ( ( ( 4 ^ n ) + 5 ) x. 4 ) - ( 3 x. 5 ) ) ) |
90 |
52 89
|
breqtrrd |
|- ( ( n e. NN /\ 3 || ( ( 4 ^ n ) + 5 ) ) -> 3 || ( ( 4 ^ ( n + 1 ) ) + 5 ) ) |
91 |
90
|
ex |
|- ( n e. NN -> ( 3 || ( ( 4 ^ n ) + 5 ) -> 3 || ( ( 4 ^ ( n + 1 ) ) + 5 ) ) ) |
92 |
3 6 9 12 34 91
|
nnind |
|- ( N e. NN -> 3 || ( ( 4 ^ N ) + 5 ) ) |