| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
⊢ ( 𝑘 = 1 → ( 4 ↑ 𝑘 ) = ( 4 ↑ 1 ) ) |
| 2 |
1
|
oveq1d |
⊢ ( 𝑘 = 1 → ( ( 4 ↑ 𝑘 ) + 5 ) = ( ( 4 ↑ 1 ) + 5 ) ) |
| 3 |
2
|
breq2d |
⊢ ( 𝑘 = 1 → ( 3 ∥ ( ( 4 ↑ 𝑘 ) + 5 ) ↔ 3 ∥ ( ( 4 ↑ 1 ) + 5 ) ) ) |
| 4 |
|
oveq2 |
⊢ ( 𝑘 = 𝑛 → ( 4 ↑ 𝑘 ) = ( 4 ↑ 𝑛 ) ) |
| 5 |
4
|
oveq1d |
⊢ ( 𝑘 = 𝑛 → ( ( 4 ↑ 𝑘 ) + 5 ) = ( ( 4 ↑ 𝑛 ) + 5 ) ) |
| 6 |
5
|
breq2d |
⊢ ( 𝑘 = 𝑛 → ( 3 ∥ ( ( 4 ↑ 𝑘 ) + 5 ) ↔ 3 ∥ ( ( 4 ↑ 𝑛 ) + 5 ) ) ) |
| 7 |
|
oveq2 |
⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( 4 ↑ 𝑘 ) = ( 4 ↑ ( 𝑛 + 1 ) ) ) |
| 8 |
7
|
oveq1d |
⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( ( 4 ↑ 𝑘 ) + 5 ) = ( ( 4 ↑ ( 𝑛 + 1 ) ) + 5 ) ) |
| 9 |
8
|
breq2d |
⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( 3 ∥ ( ( 4 ↑ 𝑘 ) + 5 ) ↔ 3 ∥ ( ( 4 ↑ ( 𝑛 + 1 ) ) + 5 ) ) ) |
| 10 |
|
oveq2 |
⊢ ( 𝑘 = 𝑁 → ( 4 ↑ 𝑘 ) = ( 4 ↑ 𝑁 ) ) |
| 11 |
10
|
oveq1d |
⊢ ( 𝑘 = 𝑁 → ( ( 4 ↑ 𝑘 ) + 5 ) = ( ( 4 ↑ 𝑁 ) + 5 ) ) |
| 12 |
11
|
breq2d |
⊢ ( 𝑘 = 𝑁 → ( 3 ∥ ( ( 4 ↑ 𝑘 ) + 5 ) ↔ 3 ∥ ( ( 4 ↑ 𝑁 ) + 5 ) ) ) |
| 13 |
|
3z |
⊢ 3 ∈ ℤ |
| 14 |
|
4z |
⊢ 4 ∈ ℤ |
| 15 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
| 16 |
|
zexpcl |
⊢ ( ( 4 ∈ ℤ ∧ 1 ∈ ℕ0 ) → ( 4 ↑ 1 ) ∈ ℤ ) |
| 17 |
14 15 16
|
mp2an |
⊢ ( 4 ↑ 1 ) ∈ ℤ |
| 18 |
|
5nn |
⊢ 5 ∈ ℕ |
| 19 |
18
|
nnzi |
⊢ 5 ∈ ℤ |
| 20 |
|
zaddcl |
⊢ ( ( ( 4 ↑ 1 ) ∈ ℤ ∧ 5 ∈ ℤ ) → ( ( 4 ↑ 1 ) + 5 ) ∈ ℤ ) |
| 21 |
17 19 20
|
mp2an |
⊢ ( ( 4 ↑ 1 ) + 5 ) ∈ ℤ |
| 22 |
13 13 21
|
3pm3.2i |
⊢ ( 3 ∈ ℤ ∧ 3 ∈ ℤ ∧ ( ( 4 ↑ 1 ) + 5 ) ∈ ℤ ) |
| 23 |
|
3t3e9 |
⊢ ( 3 · 3 ) = 9 |
| 24 |
|
4nn0 |
⊢ 4 ∈ ℕ0 |
| 25 |
24
|
numexp1 |
⊢ ( 4 ↑ 1 ) = 4 |
| 26 |
25
|
oveq1i |
⊢ ( ( 4 ↑ 1 ) + 5 ) = ( 4 + 5 ) |
| 27 |
|
5cn |
⊢ 5 ∈ ℂ |
| 28 |
|
4cn |
⊢ 4 ∈ ℂ |
| 29 |
|
5p4e9 |
⊢ ( 5 + 4 ) = 9 |
| 30 |
27 28 29
|
addcomli |
⊢ ( 4 + 5 ) = 9 |
| 31 |
26 30
|
eqtri |
⊢ ( ( 4 ↑ 1 ) + 5 ) = 9 |
| 32 |
23 31
|
eqtr4i |
⊢ ( 3 · 3 ) = ( ( 4 ↑ 1 ) + 5 ) |
| 33 |
|
dvds0lem |
⊢ ( ( ( 3 ∈ ℤ ∧ 3 ∈ ℤ ∧ ( ( 4 ↑ 1 ) + 5 ) ∈ ℤ ) ∧ ( 3 · 3 ) = ( ( 4 ↑ 1 ) + 5 ) ) → 3 ∥ ( ( 4 ↑ 1 ) + 5 ) ) |
| 34 |
22 32 33
|
mp2an |
⊢ 3 ∥ ( ( 4 ↑ 1 ) + 5 ) |
| 35 |
13
|
a1i |
⊢ ( ( 𝑛 ∈ ℕ ∧ 3 ∥ ( ( 4 ↑ 𝑛 ) + 5 ) ) → 3 ∈ ℤ ) |
| 36 |
|
4nn |
⊢ 4 ∈ ℕ |
| 37 |
36
|
a1i |
⊢ ( 𝑛 ∈ ℕ → 4 ∈ ℕ ) |
| 38 |
|
nnnn0 |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ0 ) |
| 39 |
37 38
|
nnexpcld |
⊢ ( 𝑛 ∈ ℕ → ( 4 ↑ 𝑛 ) ∈ ℕ ) |
| 40 |
39
|
nnzd |
⊢ ( 𝑛 ∈ ℕ → ( 4 ↑ 𝑛 ) ∈ ℤ ) |
| 41 |
40
|
adantr |
⊢ ( ( 𝑛 ∈ ℕ ∧ 3 ∥ ( ( 4 ↑ 𝑛 ) + 5 ) ) → ( 4 ↑ 𝑛 ) ∈ ℤ ) |
| 42 |
19
|
a1i |
⊢ ( ( 𝑛 ∈ ℕ ∧ 3 ∥ ( ( 4 ↑ 𝑛 ) + 5 ) ) → 5 ∈ ℤ ) |
| 43 |
41 42
|
zaddcld |
⊢ ( ( 𝑛 ∈ ℕ ∧ 3 ∥ ( ( 4 ↑ 𝑛 ) + 5 ) ) → ( ( 4 ↑ 𝑛 ) + 5 ) ∈ ℤ ) |
| 44 |
14
|
a1i |
⊢ ( ( 𝑛 ∈ ℕ ∧ 3 ∥ ( ( 4 ↑ 𝑛 ) + 5 ) ) → 4 ∈ ℤ ) |
| 45 |
43 44
|
zmulcld |
⊢ ( ( 𝑛 ∈ ℕ ∧ 3 ∥ ( ( 4 ↑ 𝑛 ) + 5 ) ) → ( ( ( 4 ↑ 𝑛 ) + 5 ) · 4 ) ∈ ℤ ) |
| 46 |
35 42
|
zmulcld |
⊢ ( ( 𝑛 ∈ ℕ ∧ 3 ∥ ( ( 4 ↑ 𝑛 ) + 5 ) ) → ( 3 · 5 ) ∈ ℤ ) |
| 47 |
|
simpr |
⊢ ( ( 𝑛 ∈ ℕ ∧ 3 ∥ ( ( 4 ↑ 𝑛 ) + 5 ) ) → 3 ∥ ( ( 4 ↑ 𝑛 ) + 5 ) ) |
| 48 |
35 43 44 47
|
dvdsmultr1d |
⊢ ( ( 𝑛 ∈ ℕ ∧ 3 ∥ ( ( 4 ↑ 𝑛 ) + 5 ) ) → 3 ∥ ( ( ( 4 ↑ 𝑛 ) + 5 ) · 4 ) ) |
| 49 |
|
dvdsmul1 |
⊢ ( ( 3 ∈ ℤ ∧ 5 ∈ ℤ ) → 3 ∥ ( 3 · 5 ) ) |
| 50 |
13 19 49
|
mp2an |
⊢ 3 ∥ ( 3 · 5 ) |
| 51 |
50
|
a1i |
⊢ ( ( 𝑛 ∈ ℕ ∧ 3 ∥ ( ( 4 ↑ 𝑛 ) + 5 ) ) → 3 ∥ ( 3 · 5 ) ) |
| 52 |
35 45 46 48 51
|
dvds2subd |
⊢ ( ( 𝑛 ∈ ℕ ∧ 3 ∥ ( ( 4 ↑ 𝑛 ) + 5 ) ) → 3 ∥ ( ( ( ( 4 ↑ 𝑛 ) + 5 ) · 4 ) − ( 3 · 5 ) ) ) |
| 53 |
39
|
nncnd |
⊢ ( 𝑛 ∈ ℕ → ( 4 ↑ 𝑛 ) ∈ ℂ ) |
| 54 |
27
|
a1i |
⊢ ( 𝑛 ∈ ℕ → 5 ∈ ℂ ) |
| 55 |
28
|
a1i |
⊢ ( 𝑛 ∈ ℕ → 4 ∈ ℂ ) |
| 56 |
53 54 55
|
adddird |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 4 ↑ 𝑛 ) + 5 ) · 4 ) = ( ( ( 4 ↑ 𝑛 ) · 4 ) + ( 5 · 4 ) ) ) |
| 57 |
56
|
oveq1d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( ( 4 ↑ 𝑛 ) + 5 ) · 4 ) − ; 1 5 ) = ( ( ( ( 4 ↑ 𝑛 ) · 4 ) + ( 5 · 4 ) ) − ; 1 5 ) ) |
| 58 |
|
3cn |
⊢ 3 ∈ ℂ |
| 59 |
|
5t3e15 |
⊢ ( 5 · 3 ) = ; 1 5 |
| 60 |
27 58 59
|
mulcomli |
⊢ ( 3 · 5 ) = ; 1 5 |
| 61 |
60
|
a1i |
⊢ ( 𝑛 ∈ ℕ → ( 3 · 5 ) = ; 1 5 ) |
| 62 |
61
|
oveq2d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( ( 4 ↑ 𝑛 ) + 5 ) · 4 ) − ( 3 · 5 ) ) = ( ( ( ( 4 ↑ 𝑛 ) + 5 ) · 4 ) − ; 1 5 ) ) |
| 63 |
55 38
|
expp1d |
⊢ ( 𝑛 ∈ ℕ → ( 4 ↑ ( 𝑛 + 1 ) ) = ( ( 4 ↑ 𝑛 ) · 4 ) ) |
| 64 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 65 |
|
3p1e4 |
⊢ ( 3 + 1 ) = 4 |
| 66 |
58 64 65
|
addcomli |
⊢ ( 1 + 3 ) = 4 |
| 67 |
66
|
eqcomi |
⊢ 4 = ( 1 + 3 ) |
| 68 |
67
|
oveq1i |
⊢ ( 4 − 3 ) = ( ( 1 + 3 ) − 3 ) |
| 69 |
64 58
|
pncan3oi |
⊢ ( ( 1 + 3 ) − 3 ) = 1 |
| 70 |
68 69
|
eqtri |
⊢ ( 4 − 3 ) = 1 |
| 71 |
70
|
oveq2i |
⊢ ( 5 · ( 4 − 3 ) ) = ( 5 · 1 ) |
| 72 |
27 28 58
|
subdii |
⊢ ( 5 · ( 4 − 3 ) ) = ( ( 5 · 4 ) − ( 5 · 3 ) ) |
| 73 |
27
|
mulridi |
⊢ ( 5 · 1 ) = 5 |
| 74 |
71 72 73
|
3eqtr3ri |
⊢ 5 = ( ( 5 · 4 ) − ( 5 · 3 ) ) |
| 75 |
59
|
eqcomi |
⊢ ; 1 5 = ( 5 · 3 ) |
| 76 |
75
|
oveq2i |
⊢ ( ( 5 · 4 ) − ; 1 5 ) = ( ( 5 · 4 ) − ( 5 · 3 ) ) |
| 77 |
74 76
|
eqtr4i |
⊢ 5 = ( ( 5 · 4 ) − ; 1 5 ) |
| 78 |
77
|
a1i |
⊢ ( 𝑛 ∈ ℕ → 5 = ( ( 5 · 4 ) − ; 1 5 ) ) |
| 79 |
63 78
|
oveq12d |
⊢ ( 𝑛 ∈ ℕ → ( ( 4 ↑ ( 𝑛 + 1 ) ) + 5 ) = ( ( ( 4 ↑ 𝑛 ) · 4 ) + ( ( 5 · 4 ) − ; 1 5 ) ) ) |
| 80 |
53 55
|
mulcld |
⊢ ( 𝑛 ∈ ℕ → ( ( 4 ↑ 𝑛 ) · 4 ) ∈ ℂ ) |
| 81 |
54 55
|
mulcld |
⊢ ( 𝑛 ∈ ℕ → ( 5 · 4 ) ∈ ℂ ) |
| 82 |
|
5nn0 |
⊢ 5 ∈ ℕ0 |
| 83 |
15 82
|
deccl |
⊢ ; 1 5 ∈ ℕ0 |
| 84 |
83
|
nn0cni |
⊢ ; 1 5 ∈ ℂ |
| 85 |
84
|
a1i |
⊢ ( 𝑛 ∈ ℕ → ; 1 5 ∈ ℂ ) |
| 86 |
80 81 85
|
addsubassd |
⊢ ( 𝑛 ∈ ℕ → ( ( ( ( 4 ↑ 𝑛 ) · 4 ) + ( 5 · 4 ) ) − ; 1 5 ) = ( ( ( 4 ↑ 𝑛 ) · 4 ) + ( ( 5 · 4 ) − ; 1 5 ) ) ) |
| 87 |
79 86
|
eqtr4d |
⊢ ( 𝑛 ∈ ℕ → ( ( 4 ↑ ( 𝑛 + 1 ) ) + 5 ) = ( ( ( ( 4 ↑ 𝑛 ) · 4 ) + ( 5 · 4 ) ) − ; 1 5 ) ) |
| 88 |
57 62 87
|
3eqtr4rd |
⊢ ( 𝑛 ∈ ℕ → ( ( 4 ↑ ( 𝑛 + 1 ) ) + 5 ) = ( ( ( ( 4 ↑ 𝑛 ) + 5 ) · 4 ) − ( 3 · 5 ) ) ) |
| 89 |
88
|
adantr |
⊢ ( ( 𝑛 ∈ ℕ ∧ 3 ∥ ( ( 4 ↑ 𝑛 ) + 5 ) ) → ( ( 4 ↑ ( 𝑛 + 1 ) ) + 5 ) = ( ( ( ( 4 ↑ 𝑛 ) + 5 ) · 4 ) − ( 3 · 5 ) ) ) |
| 90 |
52 89
|
breqtrrd |
⊢ ( ( 𝑛 ∈ ℕ ∧ 3 ∥ ( ( 4 ↑ 𝑛 ) + 5 ) ) → 3 ∥ ( ( 4 ↑ ( 𝑛 + 1 ) ) + 5 ) ) |
| 91 |
90
|
ex |
⊢ ( 𝑛 ∈ ℕ → ( 3 ∥ ( ( 4 ↑ 𝑛 ) + 5 ) → 3 ∥ ( ( 4 ↑ ( 𝑛 + 1 ) ) + 5 ) ) ) |
| 92 |
3 6 9 12 34 91
|
nnind |
⊢ ( 𝑁 ∈ ℕ → 3 ∥ ( ( 4 ↑ 𝑁 ) + 5 ) ) |