| Step | Hyp | Ref | Expression | 
						
							| 1 |  | inf3lem.1 |  |-  G = ( y e. _V |-> { w e. x | ( w i^i x ) C_ y } ) | 
						
							| 2 |  | inf3lem.2 |  |-  F = ( rec ( G , (/) ) |` _om ) | 
						
							| 3 |  | inf3lem.3 |  |-  A e. _V | 
						
							| 4 |  | inf3lem.4 |  |-  B e. _V | 
						
							| 5 |  | fveq2 |  |-  ( A = (/) -> ( F ` A ) = ( F ` (/) ) ) | 
						
							| 6 | 1 2 3 4 | inf3lemb |  |-  ( F ` (/) ) = (/) | 
						
							| 7 | 5 6 | eqtrdi |  |-  ( A = (/) -> ( F ` A ) = (/) ) | 
						
							| 8 |  | 0ss |  |-  (/) C_ x | 
						
							| 9 | 7 8 | eqsstrdi |  |-  ( A = (/) -> ( F ` A ) C_ x ) | 
						
							| 10 | 9 | a1d |  |-  ( A = (/) -> ( A e. _om -> ( F ` A ) C_ x ) ) | 
						
							| 11 |  | nnsuc |  |-  ( ( A e. _om /\ A =/= (/) ) -> E. v e. _om A = suc v ) | 
						
							| 12 |  | vex |  |-  v e. _V | 
						
							| 13 | 1 2 12 4 | inf3lemc |  |-  ( v e. _om -> ( F ` suc v ) = ( G ` ( F ` v ) ) ) | 
						
							| 14 | 13 | eleq2d |  |-  ( v e. _om -> ( u e. ( F ` suc v ) <-> u e. ( G ` ( F ` v ) ) ) ) | 
						
							| 15 |  | vex |  |-  u e. _V | 
						
							| 16 |  | fvex |  |-  ( F ` v ) e. _V | 
						
							| 17 | 1 2 15 16 | inf3lema |  |-  ( u e. ( G ` ( F ` v ) ) <-> ( u e. x /\ ( u i^i x ) C_ ( F ` v ) ) ) | 
						
							| 18 | 17 | simplbi |  |-  ( u e. ( G ` ( F ` v ) ) -> u e. x ) | 
						
							| 19 | 14 18 | biimtrdi |  |-  ( v e. _om -> ( u e. ( F ` suc v ) -> u e. x ) ) | 
						
							| 20 | 19 | ssrdv |  |-  ( v e. _om -> ( F ` suc v ) C_ x ) | 
						
							| 21 |  | fveq2 |  |-  ( A = suc v -> ( F ` A ) = ( F ` suc v ) ) | 
						
							| 22 | 21 | sseq1d |  |-  ( A = suc v -> ( ( F ` A ) C_ x <-> ( F ` suc v ) C_ x ) ) | 
						
							| 23 | 20 22 | syl5ibrcom |  |-  ( v e. _om -> ( A = suc v -> ( F ` A ) C_ x ) ) | 
						
							| 24 | 23 | rexlimiv |  |-  ( E. v e. _om A = suc v -> ( F ` A ) C_ x ) | 
						
							| 25 | 11 24 | syl |  |-  ( ( A e. _om /\ A =/= (/) ) -> ( F ` A ) C_ x ) | 
						
							| 26 | 25 | expcom |  |-  ( A =/= (/) -> ( A e. _om -> ( F ` A ) C_ x ) ) | 
						
							| 27 | 10 26 | pm2.61ine |  |-  ( A e. _om -> ( F ` A ) C_ x ) |