| Step | Hyp | Ref | Expression | 
						
							| 1 |  | infpnlem.1 |  |-  K = ( ( ! ` N ) + 1 ) | 
						
							| 2 |  | nnnn0 |  |-  ( N e. NN -> N e. NN0 ) | 
						
							| 3 | 2 | faccld |  |-  ( N e. NN -> ( ! ` N ) e. NN ) | 
						
							| 4 | 3 | peano2nnd |  |-  ( N e. NN -> ( ( ! ` N ) + 1 ) e. NN ) | 
						
							| 5 | 1 4 | eqeltrid |  |-  ( N e. NN -> K e. NN ) | 
						
							| 6 | 3 | nnge1d |  |-  ( N e. NN -> 1 <_ ( ! ` N ) ) | 
						
							| 7 |  | 1nn |  |-  1 e. NN | 
						
							| 8 |  | nnleltp1 |  |-  ( ( 1 e. NN /\ ( ! ` N ) e. NN ) -> ( 1 <_ ( ! ` N ) <-> 1 < ( ( ! ` N ) + 1 ) ) ) | 
						
							| 9 | 7 3 8 | sylancr |  |-  ( N e. NN -> ( 1 <_ ( ! ` N ) <-> 1 < ( ( ! ` N ) + 1 ) ) ) | 
						
							| 10 | 6 9 | mpbid |  |-  ( N e. NN -> 1 < ( ( ! ` N ) + 1 ) ) | 
						
							| 11 | 10 1 | breqtrrdi |  |-  ( N e. NN -> 1 < K ) | 
						
							| 12 |  | nncn |  |-  ( K e. NN -> K e. CC ) | 
						
							| 13 |  | nnne0 |  |-  ( K e. NN -> K =/= 0 ) | 
						
							| 14 | 12 13 | jca |  |-  ( K e. NN -> ( K e. CC /\ K =/= 0 ) ) | 
						
							| 15 |  | divid |  |-  ( ( K e. CC /\ K =/= 0 ) -> ( K / K ) = 1 ) | 
						
							| 16 | 5 14 15 | 3syl |  |-  ( N e. NN -> ( K / K ) = 1 ) | 
						
							| 17 | 16 7 | eqeltrdi |  |-  ( N e. NN -> ( K / K ) e. NN ) | 
						
							| 18 |  | breq2 |  |-  ( j = K -> ( 1 < j <-> 1 < K ) ) | 
						
							| 19 |  | oveq2 |  |-  ( j = K -> ( K / j ) = ( K / K ) ) | 
						
							| 20 | 19 | eleq1d |  |-  ( j = K -> ( ( K / j ) e. NN <-> ( K / K ) e. NN ) ) | 
						
							| 21 | 18 20 | anbi12d |  |-  ( j = K -> ( ( 1 < j /\ ( K / j ) e. NN ) <-> ( 1 < K /\ ( K / K ) e. NN ) ) ) | 
						
							| 22 | 21 | rspcev |  |-  ( ( K e. NN /\ ( 1 < K /\ ( K / K ) e. NN ) ) -> E. j e. NN ( 1 < j /\ ( K / j ) e. NN ) ) | 
						
							| 23 | 5 11 17 22 | syl12anc |  |-  ( N e. NN -> E. j e. NN ( 1 < j /\ ( K / j ) e. NN ) ) | 
						
							| 24 |  | breq2 |  |-  ( j = k -> ( 1 < j <-> 1 < k ) ) | 
						
							| 25 |  | oveq2 |  |-  ( j = k -> ( K / j ) = ( K / k ) ) | 
						
							| 26 | 25 | eleq1d |  |-  ( j = k -> ( ( K / j ) e. NN <-> ( K / k ) e. NN ) ) | 
						
							| 27 | 24 26 | anbi12d |  |-  ( j = k -> ( ( 1 < j /\ ( K / j ) e. NN ) <-> ( 1 < k /\ ( K / k ) e. NN ) ) ) | 
						
							| 28 | 27 | nnwos |  |-  ( E. j e. NN ( 1 < j /\ ( K / j ) e. NN ) -> E. j e. NN ( ( 1 < j /\ ( K / j ) e. NN ) /\ A. k e. NN ( ( 1 < k /\ ( K / k ) e. NN ) -> j <_ k ) ) ) | 
						
							| 29 | 23 28 | syl |  |-  ( N e. NN -> E. j e. NN ( ( 1 < j /\ ( K / j ) e. NN ) /\ A. k e. NN ( ( 1 < k /\ ( K / k ) e. NN ) -> j <_ k ) ) ) | 
						
							| 30 | 1 | infpnlem1 |  |-  ( ( N e. NN /\ j e. NN ) -> ( ( ( 1 < j /\ ( K / j ) e. NN ) /\ A. k e. NN ( ( 1 < k /\ ( K / k ) e. NN ) -> j <_ k ) ) -> ( N < j /\ A. k e. NN ( ( j / k ) e. NN -> ( k = 1 \/ k = j ) ) ) ) ) | 
						
							| 31 | 30 | reximdva |  |-  ( N e. NN -> ( E. j e. NN ( ( 1 < j /\ ( K / j ) e. NN ) /\ A. k e. NN ( ( 1 < k /\ ( K / k ) e. NN ) -> j <_ k ) ) -> E. j e. NN ( N < j /\ A. k e. NN ( ( j / k ) e. NN -> ( k = 1 \/ k = j ) ) ) ) ) | 
						
							| 32 | 29 31 | mpd |  |-  ( N e. NN -> E. j e. NN ( N < j /\ A. k e. NN ( ( j / k ) e. NN -> ( k = 1 \/ k = j ) ) ) ) |