| Step | Hyp | Ref | Expression | 
						
							| 1 |  | infpnlem.1 | ⊢ 𝐾  =  ( ( ! ‘ 𝑁 )  +  1 ) | 
						
							| 2 |  | nnnn0 | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℕ0 ) | 
						
							| 3 | 2 | faccld | ⊢ ( 𝑁  ∈  ℕ  →  ( ! ‘ 𝑁 )  ∈  ℕ ) | 
						
							| 4 | 3 | peano2nnd | ⊢ ( 𝑁  ∈  ℕ  →  ( ( ! ‘ 𝑁 )  +  1 )  ∈  ℕ ) | 
						
							| 5 | 1 4 | eqeltrid | ⊢ ( 𝑁  ∈  ℕ  →  𝐾  ∈  ℕ ) | 
						
							| 6 | 3 | nnge1d | ⊢ ( 𝑁  ∈  ℕ  →  1  ≤  ( ! ‘ 𝑁 ) ) | 
						
							| 7 |  | 1nn | ⊢ 1  ∈  ℕ | 
						
							| 8 |  | nnleltp1 | ⊢ ( ( 1  ∈  ℕ  ∧  ( ! ‘ 𝑁 )  ∈  ℕ )  →  ( 1  ≤  ( ! ‘ 𝑁 )  ↔  1  <  ( ( ! ‘ 𝑁 )  +  1 ) ) ) | 
						
							| 9 | 7 3 8 | sylancr | ⊢ ( 𝑁  ∈  ℕ  →  ( 1  ≤  ( ! ‘ 𝑁 )  ↔  1  <  ( ( ! ‘ 𝑁 )  +  1 ) ) ) | 
						
							| 10 | 6 9 | mpbid | ⊢ ( 𝑁  ∈  ℕ  →  1  <  ( ( ! ‘ 𝑁 )  +  1 ) ) | 
						
							| 11 | 10 1 | breqtrrdi | ⊢ ( 𝑁  ∈  ℕ  →  1  <  𝐾 ) | 
						
							| 12 |  | nncn | ⊢ ( 𝐾  ∈  ℕ  →  𝐾  ∈  ℂ ) | 
						
							| 13 |  | nnne0 | ⊢ ( 𝐾  ∈  ℕ  →  𝐾  ≠  0 ) | 
						
							| 14 | 12 13 | jca | ⊢ ( 𝐾  ∈  ℕ  →  ( 𝐾  ∈  ℂ  ∧  𝐾  ≠  0 ) ) | 
						
							| 15 |  | divid | ⊢ ( ( 𝐾  ∈  ℂ  ∧  𝐾  ≠  0 )  →  ( 𝐾  /  𝐾 )  =  1 ) | 
						
							| 16 | 5 14 15 | 3syl | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝐾  /  𝐾 )  =  1 ) | 
						
							| 17 | 16 7 | eqeltrdi | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝐾  /  𝐾 )  ∈  ℕ ) | 
						
							| 18 |  | breq2 | ⊢ ( 𝑗  =  𝐾  →  ( 1  <  𝑗  ↔  1  <  𝐾 ) ) | 
						
							| 19 |  | oveq2 | ⊢ ( 𝑗  =  𝐾  →  ( 𝐾  /  𝑗 )  =  ( 𝐾  /  𝐾 ) ) | 
						
							| 20 | 19 | eleq1d | ⊢ ( 𝑗  =  𝐾  →  ( ( 𝐾  /  𝑗 )  ∈  ℕ  ↔  ( 𝐾  /  𝐾 )  ∈  ℕ ) ) | 
						
							| 21 | 18 20 | anbi12d | ⊢ ( 𝑗  =  𝐾  →  ( ( 1  <  𝑗  ∧  ( 𝐾  /  𝑗 )  ∈  ℕ )  ↔  ( 1  <  𝐾  ∧  ( 𝐾  /  𝐾 )  ∈  ℕ ) ) ) | 
						
							| 22 | 21 | rspcev | ⊢ ( ( 𝐾  ∈  ℕ  ∧  ( 1  <  𝐾  ∧  ( 𝐾  /  𝐾 )  ∈  ℕ ) )  →  ∃ 𝑗  ∈  ℕ ( 1  <  𝑗  ∧  ( 𝐾  /  𝑗 )  ∈  ℕ ) ) | 
						
							| 23 | 5 11 17 22 | syl12anc | ⊢ ( 𝑁  ∈  ℕ  →  ∃ 𝑗  ∈  ℕ ( 1  <  𝑗  ∧  ( 𝐾  /  𝑗 )  ∈  ℕ ) ) | 
						
							| 24 |  | breq2 | ⊢ ( 𝑗  =  𝑘  →  ( 1  <  𝑗  ↔  1  <  𝑘 ) ) | 
						
							| 25 |  | oveq2 | ⊢ ( 𝑗  =  𝑘  →  ( 𝐾  /  𝑗 )  =  ( 𝐾  /  𝑘 ) ) | 
						
							| 26 | 25 | eleq1d | ⊢ ( 𝑗  =  𝑘  →  ( ( 𝐾  /  𝑗 )  ∈  ℕ  ↔  ( 𝐾  /  𝑘 )  ∈  ℕ ) ) | 
						
							| 27 | 24 26 | anbi12d | ⊢ ( 𝑗  =  𝑘  →  ( ( 1  <  𝑗  ∧  ( 𝐾  /  𝑗 )  ∈  ℕ )  ↔  ( 1  <  𝑘  ∧  ( 𝐾  /  𝑘 )  ∈  ℕ ) ) ) | 
						
							| 28 | 27 | nnwos | ⊢ ( ∃ 𝑗  ∈  ℕ ( 1  <  𝑗  ∧  ( 𝐾  /  𝑗 )  ∈  ℕ )  →  ∃ 𝑗  ∈  ℕ ( ( 1  <  𝑗  ∧  ( 𝐾  /  𝑗 )  ∈  ℕ )  ∧  ∀ 𝑘  ∈  ℕ ( ( 1  <  𝑘  ∧  ( 𝐾  /  𝑘 )  ∈  ℕ )  →  𝑗  ≤  𝑘 ) ) ) | 
						
							| 29 | 23 28 | syl | ⊢ ( 𝑁  ∈  ℕ  →  ∃ 𝑗  ∈  ℕ ( ( 1  <  𝑗  ∧  ( 𝐾  /  𝑗 )  ∈  ℕ )  ∧  ∀ 𝑘  ∈  ℕ ( ( 1  <  𝑘  ∧  ( 𝐾  /  𝑘 )  ∈  ℕ )  →  𝑗  ≤  𝑘 ) ) ) | 
						
							| 30 | 1 | infpnlem1 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  →  ( ( ( 1  <  𝑗  ∧  ( 𝐾  /  𝑗 )  ∈  ℕ )  ∧  ∀ 𝑘  ∈  ℕ ( ( 1  <  𝑘  ∧  ( 𝐾  /  𝑘 )  ∈  ℕ )  →  𝑗  ≤  𝑘 ) )  →  ( 𝑁  <  𝑗  ∧  ∀ 𝑘  ∈  ℕ ( ( 𝑗  /  𝑘 )  ∈  ℕ  →  ( 𝑘  =  1  ∨  𝑘  =  𝑗 ) ) ) ) ) | 
						
							| 31 | 30 | reximdva | ⊢ ( 𝑁  ∈  ℕ  →  ( ∃ 𝑗  ∈  ℕ ( ( 1  <  𝑗  ∧  ( 𝐾  /  𝑗 )  ∈  ℕ )  ∧  ∀ 𝑘  ∈  ℕ ( ( 1  <  𝑘  ∧  ( 𝐾  /  𝑘 )  ∈  ℕ )  →  𝑗  ≤  𝑘 ) )  →  ∃ 𝑗  ∈  ℕ ( 𝑁  <  𝑗  ∧  ∀ 𝑘  ∈  ℕ ( ( 𝑗  /  𝑘 )  ∈  ℕ  →  ( 𝑘  =  1  ∨  𝑘  =  𝑗 ) ) ) ) ) | 
						
							| 32 | 29 31 | mpd | ⊢ ( 𝑁  ∈  ℕ  →  ∃ 𝑗  ∈  ℕ ( 𝑁  <  𝑗  ∧  ∀ 𝑘  ∈  ℕ ( ( 𝑗  /  𝑘 )  ∈  ℕ  →  ( 𝑘  =  1  ∨  𝑘  =  𝑗 ) ) ) ) |