Step |
Hyp |
Ref |
Expression |
1 |
|
iscnrm3rlem4.1 |
|- ( ph -> J e. Top ) |
2 |
|
iscnrm3rlem4.2 |
|- ( ph -> S C_ U. J ) |
3 |
|
iscnrm3rlem4.3 |
|- ( ph -> ( S i^i T ) = (/) ) |
4 |
|
iscnrm3rlem4.4 |
|- ( ph -> ( ( ( cls ` J ) ` S ) \ T ) C_ N ) |
5 |
|
indifdi |
|- ( S i^i ( ( ( cls ` J ) ` S ) \ T ) ) = ( ( S i^i ( ( cls ` J ) ` S ) ) \ ( S i^i T ) ) |
6 |
5
|
a1i |
|- ( ph -> ( S i^i ( ( ( cls ` J ) ` S ) \ T ) ) = ( ( S i^i ( ( cls ` J ) ` S ) ) \ ( S i^i T ) ) ) |
7 |
3
|
difeq2d |
|- ( ph -> ( ( S i^i ( ( cls ` J ) ` S ) ) \ ( S i^i T ) ) = ( ( S i^i ( ( cls ` J ) ` S ) ) \ (/) ) ) |
8 |
|
dif0 |
|- ( ( S i^i ( ( cls ` J ) ` S ) ) \ (/) ) = ( S i^i ( ( cls ` J ) ` S ) ) |
9 |
7 8
|
eqtrdi |
|- ( ph -> ( ( S i^i ( ( cls ` J ) ` S ) ) \ ( S i^i T ) ) = ( S i^i ( ( cls ` J ) ` S ) ) ) |
10 |
|
eqid |
|- U. J = U. J |
11 |
10
|
sscls |
|- ( ( J e. Top /\ S C_ U. J ) -> S C_ ( ( cls ` J ) ` S ) ) |
12 |
1 2 11
|
syl2anc |
|- ( ph -> S C_ ( ( cls ` J ) ` S ) ) |
13 |
|
df-ss |
|- ( S C_ ( ( cls ` J ) ` S ) <-> ( S i^i ( ( cls ` J ) ` S ) ) = S ) |
14 |
12 13
|
sylib |
|- ( ph -> ( S i^i ( ( cls ` J ) ` S ) ) = S ) |
15 |
6 9 14
|
3eqtrd |
|- ( ph -> ( S i^i ( ( ( cls ` J ) ` S ) \ T ) ) = S ) |
16 |
|
df-ss |
|- ( S C_ ( ( ( cls ` J ) ` S ) \ T ) <-> ( S i^i ( ( ( cls ` J ) ` S ) \ T ) ) = S ) |
17 |
15 16
|
sylibr |
|- ( ph -> S C_ ( ( ( cls ` J ) ` S ) \ T ) ) |
18 |
17 4
|
sstrd |
|- ( ph -> S C_ N ) |