Metamath Proof Explorer


Theorem iscnrm3rlem4

Description: Lemma for iscnrm3rlem8 . Given two disjoint subsets S and T of the underlying set of a topology J , if N is a superset of ( ( ( clsJ )S ) \ T ) , then it is a superset of S . (Contributed by Zhi Wang, 5-Sep-2024)

Ref Expression
Hypotheses iscnrm3rlem4.1
|- ( ph -> J e. Top )
iscnrm3rlem4.2
|- ( ph -> S C_ U. J )
iscnrm3rlem4.3
|- ( ph -> ( S i^i T ) = (/) )
iscnrm3rlem4.4
|- ( ph -> ( ( ( cls ` J ) ` S ) \ T ) C_ N )
Assertion iscnrm3rlem4
|- ( ph -> S C_ N )

Proof

Step Hyp Ref Expression
1 iscnrm3rlem4.1
 |-  ( ph -> J e. Top )
2 iscnrm3rlem4.2
 |-  ( ph -> S C_ U. J )
3 iscnrm3rlem4.3
 |-  ( ph -> ( S i^i T ) = (/) )
4 iscnrm3rlem4.4
 |-  ( ph -> ( ( ( cls ` J ) ` S ) \ T ) C_ N )
5 indifdi
 |-  ( S i^i ( ( ( cls ` J ) ` S ) \ T ) ) = ( ( S i^i ( ( cls ` J ) ` S ) ) \ ( S i^i T ) )
6 5 a1i
 |-  ( ph -> ( S i^i ( ( ( cls ` J ) ` S ) \ T ) ) = ( ( S i^i ( ( cls ` J ) ` S ) ) \ ( S i^i T ) ) )
7 3 difeq2d
 |-  ( ph -> ( ( S i^i ( ( cls ` J ) ` S ) ) \ ( S i^i T ) ) = ( ( S i^i ( ( cls ` J ) ` S ) ) \ (/) ) )
8 dif0
 |-  ( ( S i^i ( ( cls ` J ) ` S ) ) \ (/) ) = ( S i^i ( ( cls ` J ) ` S ) )
9 7 8 eqtrdi
 |-  ( ph -> ( ( S i^i ( ( cls ` J ) ` S ) ) \ ( S i^i T ) ) = ( S i^i ( ( cls ` J ) ` S ) ) )
10 eqid
 |-  U. J = U. J
11 10 sscls
 |-  ( ( J e. Top /\ S C_ U. J ) -> S C_ ( ( cls ` J ) ` S ) )
12 1 2 11 syl2anc
 |-  ( ph -> S C_ ( ( cls ` J ) ` S ) )
13 df-ss
 |-  ( S C_ ( ( cls ` J ) ` S ) <-> ( S i^i ( ( cls ` J ) ` S ) ) = S )
14 12 13 sylib
 |-  ( ph -> ( S i^i ( ( cls ` J ) ` S ) ) = S )
15 6 9 14 3eqtrd
 |-  ( ph -> ( S i^i ( ( ( cls ` J ) ` S ) \ T ) ) = S )
16 df-ss
 |-  ( S C_ ( ( ( cls ` J ) ` S ) \ T ) <-> ( S i^i ( ( ( cls ` J ) ` S ) \ T ) ) = S )
17 15 16 sylibr
 |-  ( ph -> S C_ ( ( ( cls ` J ) ` S ) \ T ) )
18 17 4 sstrd
 |-  ( ph -> S C_ N )