Metamath Proof Explorer


Theorem iscnrm3rlem4

Description: Lemma for iscnrm3rlem8 . Given two disjoint subsets S and T of the underlying set of a topology J , if N is a superset of ( ( ( clsJ )S ) \ T ) , then it is a superset of S . (Contributed by Zhi Wang, 5-Sep-2024)

Ref Expression
Hypotheses iscnrm3rlem4.1 ( 𝜑𝐽 ∈ Top )
iscnrm3rlem4.2 ( 𝜑𝑆 𝐽 )
iscnrm3rlem4.3 ( 𝜑 → ( 𝑆𝑇 ) = ∅ )
iscnrm3rlem4.4 ( 𝜑 → ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∖ 𝑇 ) ⊆ 𝑁 )
Assertion iscnrm3rlem4 ( 𝜑𝑆𝑁 )

Proof

Step Hyp Ref Expression
1 iscnrm3rlem4.1 ( 𝜑𝐽 ∈ Top )
2 iscnrm3rlem4.2 ( 𝜑𝑆 𝐽 )
3 iscnrm3rlem4.3 ( 𝜑 → ( 𝑆𝑇 ) = ∅ )
4 iscnrm3rlem4.4 ( 𝜑 → ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∖ 𝑇 ) ⊆ 𝑁 )
5 indifdi ( 𝑆 ∩ ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∖ 𝑇 ) ) = ( ( 𝑆 ∩ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∖ ( 𝑆𝑇 ) )
6 5 a1i ( 𝜑 → ( 𝑆 ∩ ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∖ 𝑇 ) ) = ( ( 𝑆 ∩ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∖ ( 𝑆𝑇 ) ) )
7 3 difeq2d ( 𝜑 → ( ( 𝑆 ∩ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∖ ( 𝑆𝑇 ) ) = ( ( 𝑆 ∩ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∖ ∅ ) )
8 dif0 ( ( 𝑆 ∩ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∖ ∅ ) = ( 𝑆 ∩ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) )
9 7 8 eqtrdi ( 𝜑 → ( ( 𝑆 ∩ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∖ ( 𝑆𝑇 ) ) = ( 𝑆 ∩ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) )
10 eqid 𝐽 = 𝐽
11 10 sscls ( ( 𝐽 ∈ Top ∧ 𝑆 𝐽 ) → 𝑆 ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) )
12 1 2 11 syl2anc ( 𝜑𝑆 ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) )
13 df-ss ( 𝑆 ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ↔ ( 𝑆 ∩ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) = 𝑆 )
14 12 13 sylib ( 𝜑 → ( 𝑆 ∩ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) = 𝑆 )
15 6 9 14 3eqtrd ( 𝜑 → ( 𝑆 ∩ ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∖ 𝑇 ) ) = 𝑆 )
16 df-ss ( 𝑆 ⊆ ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∖ 𝑇 ) ↔ ( 𝑆 ∩ ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∖ 𝑇 ) ) = 𝑆 )
17 15 16 sylibr ( 𝜑𝑆 ⊆ ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∖ 𝑇 ) )
18 17 4 sstrd ( 𝜑𝑆𝑁 )