Step |
Hyp |
Ref |
Expression |
1 |
|
iscnrm3rlem4.1 |
⊢ ( 𝜑 → 𝐽 ∈ Top ) |
2 |
|
iscnrm3rlem4.2 |
⊢ ( 𝜑 → 𝑆 ⊆ ∪ 𝐽 ) |
3 |
|
iscnrm3rlem4.3 |
⊢ ( 𝜑 → ( 𝑆 ∩ 𝑇 ) = ∅ ) |
4 |
|
iscnrm3rlem4.4 |
⊢ ( 𝜑 → ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∖ 𝑇 ) ⊆ 𝑁 ) |
5 |
|
indifdi |
⊢ ( 𝑆 ∩ ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∖ 𝑇 ) ) = ( ( 𝑆 ∩ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∖ ( 𝑆 ∩ 𝑇 ) ) |
6 |
5
|
a1i |
⊢ ( 𝜑 → ( 𝑆 ∩ ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∖ 𝑇 ) ) = ( ( 𝑆 ∩ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∖ ( 𝑆 ∩ 𝑇 ) ) ) |
7 |
3
|
difeq2d |
⊢ ( 𝜑 → ( ( 𝑆 ∩ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∖ ( 𝑆 ∩ 𝑇 ) ) = ( ( 𝑆 ∩ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∖ ∅ ) ) |
8 |
|
dif0 |
⊢ ( ( 𝑆 ∩ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∖ ∅ ) = ( 𝑆 ∩ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) |
9 |
7 8
|
eqtrdi |
⊢ ( 𝜑 → ( ( 𝑆 ∩ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∖ ( 𝑆 ∩ 𝑇 ) ) = ( 𝑆 ∩ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
10 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
11 |
10
|
sscls |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽 ) → 𝑆 ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) |
12 |
1 2 11
|
syl2anc |
⊢ ( 𝜑 → 𝑆 ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) |
13 |
|
df-ss |
⊢ ( 𝑆 ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ↔ ( 𝑆 ∩ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) = 𝑆 ) |
14 |
12 13
|
sylib |
⊢ ( 𝜑 → ( 𝑆 ∩ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) = 𝑆 ) |
15 |
6 9 14
|
3eqtrd |
⊢ ( 𝜑 → ( 𝑆 ∩ ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∖ 𝑇 ) ) = 𝑆 ) |
16 |
|
df-ss |
⊢ ( 𝑆 ⊆ ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∖ 𝑇 ) ↔ ( 𝑆 ∩ ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∖ 𝑇 ) ) = 𝑆 ) |
17 |
15 16
|
sylibr |
⊢ ( 𝜑 → 𝑆 ⊆ ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∖ 𝑇 ) ) |
18 |
17 4
|
sstrd |
⊢ ( 𝜑 → 𝑆 ⊆ 𝑁 ) |