Step |
Hyp |
Ref |
Expression |
1 |
|
lfuhgr.1 |
|- V = ( Vtx ` G ) |
2 |
|
lfuhgr.2 |
|- I = ( iEdg ` G ) |
3 |
|
edgval |
|- ( Edg ` G ) = ran ( iEdg ` G ) |
4 |
2
|
rneqi |
|- ran I = ran ( iEdg ` G ) |
5 |
3 4
|
eqtr4i |
|- ( Edg ` G ) = ran I |
6 |
5
|
sseq1i |
|- ( ( Edg ` G ) C_ { x e. ~P V | 2 <_ ( # ` x ) } <-> ran I C_ { x e. ~P V | 2 <_ ( # ` x ) } ) |
7 |
2
|
uhgrfun |
|- ( G e. UHGraph -> Fun I ) |
8 |
|
fdmrn |
|- ( Fun I <-> I : dom I --> ran I ) |
9 |
|
fss |
|- ( ( I : dom I --> ran I /\ ran I C_ { x e. ~P V | 2 <_ ( # ` x ) } ) -> I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } ) |
10 |
9
|
ex |
|- ( I : dom I --> ran I -> ( ran I C_ { x e. ~P V | 2 <_ ( # ` x ) } -> I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } ) ) |
11 |
8 10
|
sylbi |
|- ( Fun I -> ( ran I C_ { x e. ~P V | 2 <_ ( # ` x ) } -> I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } ) ) |
12 |
7 11
|
syl |
|- ( G e. UHGraph -> ( ran I C_ { x e. ~P V | 2 <_ ( # ` x ) } -> I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } ) ) |
13 |
|
frn |
|- ( I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } -> ran I C_ { x e. ~P V | 2 <_ ( # ` x ) } ) |
14 |
12 13
|
impbid1 |
|- ( G e. UHGraph -> ( ran I C_ { x e. ~P V | 2 <_ ( # ` x ) } <-> I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } ) ) |
15 |
6 14
|
syl5bb |
|- ( G e. UHGraph -> ( ( Edg ` G ) C_ { x e. ~P V | 2 <_ ( # ` x ) } <-> I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } ) ) |
16 |
|
uhgredgss |
|- ( G e. UHGraph -> ( Edg ` G ) C_ ( ~P ( Vtx ` G ) \ { (/) } ) ) |
17 |
16
|
difss2d |
|- ( G e. UHGraph -> ( Edg ` G ) C_ ~P ( Vtx ` G ) ) |
18 |
1
|
pweqi |
|- ~P V = ~P ( Vtx ` G ) |
19 |
17 18
|
sseqtrrdi |
|- ( G e. UHGraph -> ( Edg ` G ) C_ ~P V ) |
20 |
|
ssrab |
|- ( ( Edg ` G ) C_ { x e. ~P V | 2 <_ ( # ` x ) } <-> ( ( Edg ` G ) C_ ~P V /\ A. x e. ( Edg ` G ) 2 <_ ( # ` x ) ) ) |
21 |
20
|
baib |
|- ( ( Edg ` G ) C_ ~P V -> ( ( Edg ` G ) C_ { x e. ~P V | 2 <_ ( # ` x ) } <-> A. x e. ( Edg ` G ) 2 <_ ( # ` x ) ) ) |
22 |
19 21
|
syl |
|- ( G e. UHGraph -> ( ( Edg ` G ) C_ { x e. ~P V | 2 <_ ( # ` x ) } <-> A. x e. ( Edg ` G ) 2 <_ ( # ` x ) ) ) |
23 |
15 22
|
bitr3d |
|- ( G e. UHGraph -> ( I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } <-> A. x e. ( Edg ` G ) 2 <_ ( # ` x ) ) ) |