| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lfuhgr.1 |
|- V = ( Vtx ` G ) |
| 2 |
|
lfuhgr.2 |
|- I = ( iEdg ` G ) |
| 3 |
|
edgval |
|- ( Edg ` G ) = ran ( iEdg ` G ) |
| 4 |
2
|
rneqi |
|- ran I = ran ( iEdg ` G ) |
| 5 |
3 4
|
eqtr4i |
|- ( Edg ` G ) = ran I |
| 6 |
5
|
sseq1i |
|- ( ( Edg ` G ) C_ { x e. ~P V | 2 <_ ( # ` x ) } <-> ran I C_ { x e. ~P V | 2 <_ ( # ` x ) } ) |
| 7 |
2
|
uhgrfun |
|- ( G e. UHGraph -> Fun I ) |
| 8 |
|
fdmrn |
|- ( Fun I <-> I : dom I --> ran I ) |
| 9 |
|
fss |
|- ( ( I : dom I --> ran I /\ ran I C_ { x e. ~P V | 2 <_ ( # ` x ) } ) -> I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } ) |
| 10 |
9
|
ex |
|- ( I : dom I --> ran I -> ( ran I C_ { x e. ~P V | 2 <_ ( # ` x ) } -> I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } ) ) |
| 11 |
8 10
|
sylbi |
|- ( Fun I -> ( ran I C_ { x e. ~P V | 2 <_ ( # ` x ) } -> I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } ) ) |
| 12 |
7 11
|
syl |
|- ( G e. UHGraph -> ( ran I C_ { x e. ~P V | 2 <_ ( # ` x ) } -> I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } ) ) |
| 13 |
|
frn |
|- ( I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } -> ran I C_ { x e. ~P V | 2 <_ ( # ` x ) } ) |
| 14 |
12 13
|
impbid1 |
|- ( G e. UHGraph -> ( ran I C_ { x e. ~P V | 2 <_ ( # ` x ) } <-> I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } ) ) |
| 15 |
6 14
|
bitrid |
|- ( G e. UHGraph -> ( ( Edg ` G ) C_ { x e. ~P V | 2 <_ ( # ` x ) } <-> I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } ) ) |
| 16 |
|
uhgredgss |
|- ( G e. UHGraph -> ( Edg ` G ) C_ ( ~P ( Vtx ` G ) \ { (/) } ) ) |
| 17 |
16
|
difss2d |
|- ( G e. UHGraph -> ( Edg ` G ) C_ ~P ( Vtx ` G ) ) |
| 18 |
1
|
pweqi |
|- ~P V = ~P ( Vtx ` G ) |
| 19 |
17 18
|
sseqtrrdi |
|- ( G e. UHGraph -> ( Edg ` G ) C_ ~P V ) |
| 20 |
|
ssrab |
|- ( ( Edg ` G ) C_ { x e. ~P V | 2 <_ ( # ` x ) } <-> ( ( Edg ` G ) C_ ~P V /\ A. x e. ( Edg ` G ) 2 <_ ( # ` x ) ) ) |
| 21 |
20
|
baib |
|- ( ( Edg ` G ) C_ ~P V -> ( ( Edg ` G ) C_ { x e. ~P V | 2 <_ ( # ` x ) } <-> A. x e. ( Edg ` G ) 2 <_ ( # ` x ) ) ) |
| 22 |
19 21
|
syl |
|- ( G e. UHGraph -> ( ( Edg ` G ) C_ { x e. ~P V | 2 <_ ( # ` x ) } <-> A. x e. ( Edg ` G ) 2 <_ ( # ` x ) ) ) |
| 23 |
15 22
|
bitr3d |
|- ( G e. UHGraph -> ( I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } <-> A. x e. ( Edg ` G ) 2 <_ ( # ` x ) ) ) |