Step |
Hyp |
Ref |
Expression |
1 |
|
lfuhgr.1 |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
lfuhgr.2 |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
3 |
|
edgval |
⊢ ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) |
4 |
2
|
rneqi |
⊢ ran 𝐼 = ran ( iEdg ‘ 𝐺 ) |
5 |
3 4
|
eqtr4i |
⊢ ( Edg ‘ 𝐺 ) = ran 𝐼 |
6 |
5
|
sseq1i |
⊢ ( ( Edg ‘ 𝐺 ) ⊆ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ↔ ran 𝐼 ⊆ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) |
7 |
2
|
uhgrfun |
⊢ ( 𝐺 ∈ UHGraph → Fun 𝐼 ) |
8 |
|
fdmrn |
⊢ ( Fun 𝐼 ↔ 𝐼 : dom 𝐼 ⟶ ran 𝐼 ) |
9 |
|
fss |
⊢ ( ( 𝐼 : dom 𝐼 ⟶ ran 𝐼 ∧ ran 𝐼 ⊆ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) → 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) |
10 |
9
|
ex |
⊢ ( 𝐼 : dom 𝐼 ⟶ ran 𝐼 → ( ran 𝐼 ⊆ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } → 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) ) |
11 |
8 10
|
sylbi |
⊢ ( Fun 𝐼 → ( ran 𝐼 ⊆ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } → 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) ) |
12 |
7 11
|
syl |
⊢ ( 𝐺 ∈ UHGraph → ( ran 𝐼 ⊆ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } → 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) ) |
13 |
|
frn |
⊢ ( 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } → ran 𝐼 ⊆ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) |
14 |
12 13
|
impbid1 |
⊢ ( 𝐺 ∈ UHGraph → ( ran 𝐼 ⊆ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ↔ 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) ) |
15 |
6 14
|
syl5bb |
⊢ ( 𝐺 ∈ UHGraph → ( ( Edg ‘ 𝐺 ) ⊆ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ↔ 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) ) |
16 |
|
uhgredgss |
⊢ ( 𝐺 ∈ UHGraph → ( Edg ‘ 𝐺 ) ⊆ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ) |
17 |
16
|
difss2d |
⊢ ( 𝐺 ∈ UHGraph → ( Edg ‘ 𝐺 ) ⊆ 𝒫 ( Vtx ‘ 𝐺 ) ) |
18 |
1
|
pweqi |
⊢ 𝒫 𝑉 = 𝒫 ( Vtx ‘ 𝐺 ) |
19 |
17 18
|
sseqtrrdi |
⊢ ( 𝐺 ∈ UHGraph → ( Edg ‘ 𝐺 ) ⊆ 𝒫 𝑉 ) |
20 |
|
ssrab |
⊢ ( ( Edg ‘ 𝐺 ) ⊆ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ↔ ( ( Edg ‘ 𝐺 ) ⊆ 𝒫 𝑉 ∧ ∀ 𝑥 ∈ ( Edg ‘ 𝐺 ) 2 ≤ ( ♯ ‘ 𝑥 ) ) ) |
21 |
20
|
baib |
⊢ ( ( Edg ‘ 𝐺 ) ⊆ 𝒫 𝑉 → ( ( Edg ‘ 𝐺 ) ⊆ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ↔ ∀ 𝑥 ∈ ( Edg ‘ 𝐺 ) 2 ≤ ( ♯ ‘ 𝑥 ) ) ) |
22 |
19 21
|
syl |
⊢ ( 𝐺 ∈ UHGraph → ( ( Edg ‘ 𝐺 ) ⊆ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ↔ ∀ 𝑥 ∈ ( Edg ‘ 𝐺 ) 2 ≤ ( ♯ ‘ 𝑥 ) ) ) |
23 |
15 22
|
bitr3d |
⊢ ( 𝐺 ∈ UHGraph → ( 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ↔ ∀ 𝑥 ∈ ( Edg ‘ 𝐺 ) 2 ≤ ( ♯ ‘ 𝑥 ) ) ) |