Step |
Hyp |
Ref |
Expression |
1 |
|
lfuhgr.1 |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
lfuhgr.2 |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
3 |
1 2
|
lfuhgr |
⊢ ( 𝐺 ∈ UHGraph → ( 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ↔ ∀ 𝑥 ∈ ( Edg ‘ 𝐺 ) 2 ≤ ( ♯ ‘ 𝑥 ) ) ) |
4 |
|
uhgredgn0 |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑥 ∈ ( Edg ‘ 𝐺 ) ) → 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ) |
5 |
|
eldifsni |
⊢ ( 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) → 𝑥 ≠ ∅ ) |
6 |
4 5
|
syl |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑥 ∈ ( Edg ‘ 𝐺 ) ) → 𝑥 ≠ ∅ ) |
7 |
|
hashneq0 |
⊢ ( 𝑥 ∈ V → ( 0 < ( ♯ ‘ 𝑥 ) ↔ 𝑥 ≠ ∅ ) ) |
8 |
7
|
elv |
⊢ ( 0 < ( ♯ ‘ 𝑥 ) ↔ 𝑥 ≠ ∅ ) |
9 |
6 8
|
sylibr |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑥 ∈ ( Edg ‘ 𝐺 ) ) → 0 < ( ♯ ‘ 𝑥 ) ) |
10 |
9
|
gt0ne0d |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑥 ∈ ( Edg ‘ 𝐺 ) ) → ( ♯ ‘ 𝑥 ) ≠ 0 ) |
11 |
|
hashxnn0 |
⊢ ( 𝑥 ∈ V → ( ♯ ‘ 𝑥 ) ∈ ℕ0* ) |
12 |
11
|
elv |
⊢ ( ♯ ‘ 𝑥 ) ∈ ℕ0* |
13 |
|
xnn0n0n1ge2b |
⊢ ( ( ♯ ‘ 𝑥 ) ∈ ℕ0* → ( ( ( ♯ ‘ 𝑥 ) ≠ 0 ∧ ( ♯ ‘ 𝑥 ) ≠ 1 ) ↔ 2 ≤ ( ♯ ‘ 𝑥 ) ) ) |
14 |
12 13
|
ax-mp |
⊢ ( ( ( ♯ ‘ 𝑥 ) ≠ 0 ∧ ( ♯ ‘ 𝑥 ) ≠ 1 ) ↔ 2 ≤ ( ♯ ‘ 𝑥 ) ) |
15 |
14
|
biimpi |
⊢ ( ( ( ♯ ‘ 𝑥 ) ≠ 0 ∧ ( ♯ ‘ 𝑥 ) ≠ 1 ) → 2 ≤ ( ♯ ‘ 𝑥 ) ) |
16 |
10 15
|
stoic3 |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑥 ∈ ( Edg ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) ≠ 1 ) → 2 ≤ ( ♯ ‘ 𝑥 ) ) |
17 |
16
|
3exp |
⊢ ( 𝐺 ∈ UHGraph → ( 𝑥 ∈ ( Edg ‘ 𝐺 ) → ( ( ♯ ‘ 𝑥 ) ≠ 1 → 2 ≤ ( ♯ ‘ 𝑥 ) ) ) ) |
18 |
17
|
a2d |
⊢ ( 𝐺 ∈ UHGraph → ( ( 𝑥 ∈ ( Edg ‘ 𝐺 ) → ( ♯ ‘ 𝑥 ) ≠ 1 ) → ( 𝑥 ∈ ( Edg ‘ 𝐺 ) → 2 ≤ ( ♯ ‘ 𝑥 ) ) ) ) |
19 |
18
|
ralimdv2 |
⊢ ( 𝐺 ∈ UHGraph → ( ∀ 𝑥 ∈ ( Edg ‘ 𝐺 ) ( ♯ ‘ 𝑥 ) ≠ 1 → ∀ 𝑥 ∈ ( Edg ‘ 𝐺 ) 2 ≤ ( ♯ ‘ 𝑥 ) ) ) |
20 |
|
1xr |
⊢ 1 ∈ ℝ* |
21 |
|
hashxrcl |
⊢ ( 𝑥 ∈ V → ( ♯ ‘ 𝑥 ) ∈ ℝ* ) |
22 |
21
|
elv |
⊢ ( ♯ ‘ 𝑥 ) ∈ ℝ* |
23 |
|
1lt2 |
⊢ 1 < 2 |
24 |
|
2re |
⊢ 2 ∈ ℝ |
25 |
24
|
rexri |
⊢ 2 ∈ ℝ* |
26 |
|
xrltletr |
⊢ ( ( 1 ∈ ℝ* ∧ 2 ∈ ℝ* ∧ ( ♯ ‘ 𝑥 ) ∈ ℝ* ) → ( ( 1 < 2 ∧ 2 ≤ ( ♯ ‘ 𝑥 ) ) → 1 < ( ♯ ‘ 𝑥 ) ) ) |
27 |
20 25 22 26
|
mp3an |
⊢ ( ( 1 < 2 ∧ 2 ≤ ( ♯ ‘ 𝑥 ) ) → 1 < ( ♯ ‘ 𝑥 ) ) |
28 |
23 27
|
mpan |
⊢ ( 2 ≤ ( ♯ ‘ 𝑥 ) → 1 < ( ♯ ‘ 𝑥 ) ) |
29 |
|
xrltne |
⊢ ( ( 1 ∈ ℝ* ∧ ( ♯ ‘ 𝑥 ) ∈ ℝ* ∧ 1 < ( ♯ ‘ 𝑥 ) ) → ( ♯ ‘ 𝑥 ) ≠ 1 ) |
30 |
20 22 28 29
|
mp3an12i |
⊢ ( 2 ≤ ( ♯ ‘ 𝑥 ) → ( ♯ ‘ 𝑥 ) ≠ 1 ) |
31 |
30
|
ralimi |
⊢ ( ∀ 𝑥 ∈ ( Edg ‘ 𝐺 ) 2 ≤ ( ♯ ‘ 𝑥 ) → ∀ 𝑥 ∈ ( Edg ‘ 𝐺 ) ( ♯ ‘ 𝑥 ) ≠ 1 ) |
32 |
19 31
|
impbid1 |
⊢ ( 𝐺 ∈ UHGraph → ( ∀ 𝑥 ∈ ( Edg ‘ 𝐺 ) ( ♯ ‘ 𝑥 ) ≠ 1 ↔ ∀ 𝑥 ∈ ( Edg ‘ 𝐺 ) 2 ≤ ( ♯ ‘ 𝑥 ) ) ) |
33 |
3 32
|
bitr4d |
⊢ ( 𝐺 ∈ UHGraph → ( 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ↔ ∀ 𝑥 ∈ ( Edg ‘ 𝐺 ) ( ♯ ‘ 𝑥 ) ≠ 1 ) ) |