Metamath Proof Explorer


Theorem lfuhgr2

Description: A hypergraph is loop-free if and only if every edge is not a loop. (Contributed by BTernaryTau, 15-Oct-2023)

Ref Expression
Hypotheses lfuhgr.1 V = Vtx G
lfuhgr.2 I = iEdg G
Assertion lfuhgr2 G UHGraph I : dom I x 𝒫 V | 2 x x Edg G x 1

Proof

Step Hyp Ref Expression
1 lfuhgr.1 V = Vtx G
2 lfuhgr.2 I = iEdg G
3 1 2 lfuhgr G UHGraph I : dom I x 𝒫 V | 2 x x Edg G 2 x
4 uhgredgn0 G UHGraph x Edg G x 𝒫 Vtx G
5 eldifsni x 𝒫 Vtx G x
6 4 5 syl G UHGraph x Edg G x
7 hashneq0 x V 0 < x x
8 7 elv 0 < x x
9 6 8 sylibr G UHGraph x Edg G 0 < x
10 9 gt0ne0d G UHGraph x Edg G x 0
11 hashxnn0 x V x 0 *
12 11 elv x 0 *
13 xnn0n0n1ge2b x 0 * x 0 x 1 2 x
14 12 13 ax-mp x 0 x 1 2 x
15 14 biimpi x 0 x 1 2 x
16 10 15 stoic3 G UHGraph x Edg G x 1 2 x
17 16 3exp G UHGraph x Edg G x 1 2 x
18 17 a2d G UHGraph x Edg G x 1 x Edg G 2 x
19 18 ralimdv2 G UHGraph x Edg G x 1 x Edg G 2 x
20 1xr 1 *
21 hashxrcl x V x *
22 21 elv x *
23 1lt2 1 < 2
24 2re 2
25 24 rexri 2 *
26 xrltletr 1 * 2 * x * 1 < 2 2 x 1 < x
27 20 25 22 26 mp3an 1 < 2 2 x 1 < x
28 23 27 mpan 2 x 1 < x
29 xrltne 1 * x * 1 < x x 1
30 20 22 28 29 mp3an12i 2 x x 1
31 30 ralimi x Edg G 2 x x Edg G x 1
32 19 31 impbid1 G UHGraph x Edg G x 1 x Edg G 2 x
33 3 32 bitr4d G UHGraph I : dom I x 𝒫 V | 2 x x Edg G x 1