Metamath Proof Explorer


Theorem lfuhgr3

Description: A hypergraph is loop-free if and only if none of its edges connect to only one vertex. (Contributed by BTernaryTau, 15-Oct-2023)

Ref Expression
Hypotheses lfuhgr3.1 V=VtxG
lfuhgr3.2 I=iEdgG
Assertion lfuhgr3 GUHGraphI:domIx𝒫V|2x¬aaEdgG

Proof

Step Hyp Ref Expression
1 lfuhgr3.1 V=VtxG
2 lfuhgr3.2 I=iEdgG
3 1 2 lfuhgr2 GUHGraphI:domIx𝒫V|2xxEdgGx1
4 df-ne x1¬x=1
5 4 ralbii xEdgGx1xEdgG¬x=1
6 ralnex xEdgG¬x=1¬xEdgGx=1
7 df-rex xEdgGx=1xxEdgGx=1
8 7 notbii ¬xEdgGx=1¬xxEdgGx=1
9 5 6 8 3bitri xEdgGx1¬xxEdgGx=1
10 hashen1 xVx=1x1𝑜
11 10 elv x=1x1𝑜
12 en1 x1𝑜ax=a
13 11 12 bitri x=1ax=a
14 13 anbi2i xEdgGx=1xEdgGax=a
15 14 exbii xxEdgGx=1xxEdgGax=a
16 15 notbii ¬xxEdgGx=1¬xxEdgGax=a
17 19.3v axEdgGxEdgG
18 19.29 axEdgGax=aaxEdgGx=a
19 17 18 sylanbr xEdgGax=aaxEdgGx=a
20 eleq1 x=axEdgGaEdgG
21 20 biimpac xEdgGx=aaEdgG
22 21 eximi axEdgGx=aaaEdgG
23 19 22 syl xEdgGax=aaaEdgG
24 23 exlimiv xxEdgGax=aaaEdgG
25 dfclel aEdgGxx=axEdgG
26 pm3.22 x=axEdgGxEdgGx=a
27 26 eximi xx=axEdgGxxEdgGx=a
28 25 27 sylbi aEdgGxxEdgGx=a
29 28 eximi aaEdgGaxxEdgGx=a
30 excomim axxEdgGx=axaxEdgGx=a
31 19.40 axEdgGx=aaxEdgGax=a
32 ax5e axEdgGxEdgG
33 32 anim1i axEdgGax=axEdgGax=a
34 31 33 syl axEdgGx=axEdgGax=a
35 34 eximi xaxEdgGx=axxEdgGax=a
36 29 30 35 3syl aaEdgGxxEdgGax=a
37 24 36 impbii xxEdgGax=aaaEdgG
38 37 notbii ¬xxEdgGax=a¬aaEdgG
39 9 16 38 3bitri xEdgGx1¬aaEdgG
40 3 39 bitrdi GUHGraphI:domIx𝒫V|2x¬aaEdgG