Step |
Hyp |
Ref |
Expression |
1 |
|
lfuhgr3.1 |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
lfuhgr3.2 |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
3 |
1 2
|
lfuhgr2 |
⊢ ( 𝐺 ∈ UHGraph → ( 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ↔ ∀ 𝑥 ∈ ( Edg ‘ 𝐺 ) ( ♯ ‘ 𝑥 ) ≠ 1 ) ) |
4 |
|
df-ne |
⊢ ( ( ♯ ‘ 𝑥 ) ≠ 1 ↔ ¬ ( ♯ ‘ 𝑥 ) = 1 ) |
5 |
4
|
ralbii |
⊢ ( ∀ 𝑥 ∈ ( Edg ‘ 𝐺 ) ( ♯ ‘ 𝑥 ) ≠ 1 ↔ ∀ 𝑥 ∈ ( Edg ‘ 𝐺 ) ¬ ( ♯ ‘ 𝑥 ) = 1 ) |
6 |
|
ralnex |
⊢ ( ∀ 𝑥 ∈ ( Edg ‘ 𝐺 ) ¬ ( ♯ ‘ 𝑥 ) = 1 ↔ ¬ ∃ 𝑥 ∈ ( Edg ‘ 𝐺 ) ( ♯ ‘ 𝑥 ) = 1 ) |
7 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ ( Edg ‘ 𝐺 ) ( ♯ ‘ 𝑥 ) = 1 ↔ ∃ 𝑥 ( 𝑥 ∈ ( Edg ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = 1 ) ) |
8 |
7
|
notbii |
⊢ ( ¬ ∃ 𝑥 ∈ ( Edg ‘ 𝐺 ) ( ♯ ‘ 𝑥 ) = 1 ↔ ¬ ∃ 𝑥 ( 𝑥 ∈ ( Edg ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = 1 ) ) |
9 |
5 6 8
|
3bitri |
⊢ ( ∀ 𝑥 ∈ ( Edg ‘ 𝐺 ) ( ♯ ‘ 𝑥 ) ≠ 1 ↔ ¬ ∃ 𝑥 ( 𝑥 ∈ ( Edg ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = 1 ) ) |
10 |
|
hashen1 |
⊢ ( 𝑥 ∈ V → ( ( ♯ ‘ 𝑥 ) = 1 ↔ 𝑥 ≈ 1o ) ) |
11 |
10
|
elv |
⊢ ( ( ♯ ‘ 𝑥 ) = 1 ↔ 𝑥 ≈ 1o ) |
12 |
|
en1 |
⊢ ( 𝑥 ≈ 1o ↔ ∃ 𝑎 𝑥 = { 𝑎 } ) |
13 |
11 12
|
bitri |
⊢ ( ( ♯ ‘ 𝑥 ) = 1 ↔ ∃ 𝑎 𝑥 = { 𝑎 } ) |
14 |
13
|
anbi2i |
⊢ ( ( 𝑥 ∈ ( Edg ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = 1 ) ↔ ( 𝑥 ∈ ( Edg ‘ 𝐺 ) ∧ ∃ 𝑎 𝑥 = { 𝑎 } ) ) |
15 |
14
|
exbii |
⊢ ( ∃ 𝑥 ( 𝑥 ∈ ( Edg ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = 1 ) ↔ ∃ 𝑥 ( 𝑥 ∈ ( Edg ‘ 𝐺 ) ∧ ∃ 𝑎 𝑥 = { 𝑎 } ) ) |
16 |
15
|
notbii |
⊢ ( ¬ ∃ 𝑥 ( 𝑥 ∈ ( Edg ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = 1 ) ↔ ¬ ∃ 𝑥 ( 𝑥 ∈ ( Edg ‘ 𝐺 ) ∧ ∃ 𝑎 𝑥 = { 𝑎 } ) ) |
17 |
|
19.3v |
⊢ ( ∀ 𝑎 𝑥 ∈ ( Edg ‘ 𝐺 ) ↔ 𝑥 ∈ ( Edg ‘ 𝐺 ) ) |
18 |
|
19.29 |
⊢ ( ( ∀ 𝑎 𝑥 ∈ ( Edg ‘ 𝐺 ) ∧ ∃ 𝑎 𝑥 = { 𝑎 } ) → ∃ 𝑎 ( 𝑥 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑥 = { 𝑎 } ) ) |
19 |
17 18
|
sylanbr |
⊢ ( ( 𝑥 ∈ ( Edg ‘ 𝐺 ) ∧ ∃ 𝑎 𝑥 = { 𝑎 } ) → ∃ 𝑎 ( 𝑥 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑥 = { 𝑎 } ) ) |
20 |
|
eleq1 |
⊢ ( 𝑥 = { 𝑎 } → ( 𝑥 ∈ ( Edg ‘ 𝐺 ) ↔ { 𝑎 } ∈ ( Edg ‘ 𝐺 ) ) ) |
21 |
20
|
biimpac |
⊢ ( ( 𝑥 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑥 = { 𝑎 } ) → { 𝑎 } ∈ ( Edg ‘ 𝐺 ) ) |
22 |
21
|
eximi |
⊢ ( ∃ 𝑎 ( 𝑥 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑥 = { 𝑎 } ) → ∃ 𝑎 { 𝑎 } ∈ ( Edg ‘ 𝐺 ) ) |
23 |
19 22
|
syl |
⊢ ( ( 𝑥 ∈ ( Edg ‘ 𝐺 ) ∧ ∃ 𝑎 𝑥 = { 𝑎 } ) → ∃ 𝑎 { 𝑎 } ∈ ( Edg ‘ 𝐺 ) ) |
24 |
23
|
exlimiv |
⊢ ( ∃ 𝑥 ( 𝑥 ∈ ( Edg ‘ 𝐺 ) ∧ ∃ 𝑎 𝑥 = { 𝑎 } ) → ∃ 𝑎 { 𝑎 } ∈ ( Edg ‘ 𝐺 ) ) |
25 |
|
dfclel |
⊢ ( { 𝑎 } ∈ ( Edg ‘ 𝐺 ) ↔ ∃ 𝑥 ( 𝑥 = { 𝑎 } ∧ 𝑥 ∈ ( Edg ‘ 𝐺 ) ) ) |
26 |
|
pm3.22 |
⊢ ( ( 𝑥 = { 𝑎 } ∧ 𝑥 ∈ ( Edg ‘ 𝐺 ) ) → ( 𝑥 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑥 = { 𝑎 } ) ) |
27 |
26
|
eximi |
⊢ ( ∃ 𝑥 ( 𝑥 = { 𝑎 } ∧ 𝑥 ∈ ( Edg ‘ 𝐺 ) ) → ∃ 𝑥 ( 𝑥 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑥 = { 𝑎 } ) ) |
28 |
25 27
|
sylbi |
⊢ ( { 𝑎 } ∈ ( Edg ‘ 𝐺 ) → ∃ 𝑥 ( 𝑥 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑥 = { 𝑎 } ) ) |
29 |
28
|
eximi |
⊢ ( ∃ 𝑎 { 𝑎 } ∈ ( Edg ‘ 𝐺 ) → ∃ 𝑎 ∃ 𝑥 ( 𝑥 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑥 = { 𝑎 } ) ) |
30 |
|
excomim |
⊢ ( ∃ 𝑎 ∃ 𝑥 ( 𝑥 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑥 = { 𝑎 } ) → ∃ 𝑥 ∃ 𝑎 ( 𝑥 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑥 = { 𝑎 } ) ) |
31 |
|
19.40 |
⊢ ( ∃ 𝑎 ( 𝑥 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑥 = { 𝑎 } ) → ( ∃ 𝑎 𝑥 ∈ ( Edg ‘ 𝐺 ) ∧ ∃ 𝑎 𝑥 = { 𝑎 } ) ) |
32 |
|
ax5e |
⊢ ( ∃ 𝑎 𝑥 ∈ ( Edg ‘ 𝐺 ) → 𝑥 ∈ ( Edg ‘ 𝐺 ) ) |
33 |
32
|
anim1i |
⊢ ( ( ∃ 𝑎 𝑥 ∈ ( Edg ‘ 𝐺 ) ∧ ∃ 𝑎 𝑥 = { 𝑎 } ) → ( 𝑥 ∈ ( Edg ‘ 𝐺 ) ∧ ∃ 𝑎 𝑥 = { 𝑎 } ) ) |
34 |
31 33
|
syl |
⊢ ( ∃ 𝑎 ( 𝑥 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑥 = { 𝑎 } ) → ( 𝑥 ∈ ( Edg ‘ 𝐺 ) ∧ ∃ 𝑎 𝑥 = { 𝑎 } ) ) |
35 |
34
|
eximi |
⊢ ( ∃ 𝑥 ∃ 𝑎 ( 𝑥 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑥 = { 𝑎 } ) → ∃ 𝑥 ( 𝑥 ∈ ( Edg ‘ 𝐺 ) ∧ ∃ 𝑎 𝑥 = { 𝑎 } ) ) |
36 |
29 30 35
|
3syl |
⊢ ( ∃ 𝑎 { 𝑎 } ∈ ( Edg ‘ 𝐺 ) → ∃ 𝑥 ( 𝑥 ∈ ( Edg ‘ 𝐺 ) ∧ ∃ 𝑎 𝑥 = { 𝑎 } ) ) |
37 |
24 36
|
impbii |
⊢ ( ∃ 𝑥 ( 𝑥 ∈ ( Edg ‘ 𝐺 ) ∧ ∃ 𝑎 𝑥 = { 𝑎 } ) ↔ ∃ 𝑎 { 𝑎 } ∈ ( Edg ‘ 𝐺 ) ) |
38 |
37
|
notbii |
⊢ ( ¬ ∃ 𝑥 ( 𝑥 ∈ ( Edg ‘ 𝐺 ) ∧ ∃ 𝑎 𝑥 = { 𝑎 } ) ↔ ¬ ∃ 𝑎 { 𝑎 } ∈ ( Edg ‘ 𝐺 ) ) |
39 |
9 16 38
|
3bitri |
⊢ ( ∀ 𝑥 ∈ ( Edg ‘ 𝐺 ) ( ♯ ‘ 𝑥 ) ≠ 1 ↔ ¬ ∃ 𝑎 { 𝑎 } ∈ ( Edg ‘ 𝐺 ) ) |
40 |
3 39
|
bitrdi |
⊢ ( 𝐺 ∈ UHGraph → ( 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ↔ ¬ ∃ 𝑎 { 𝑎 } ∈ ( Edg ‘ 𝐺 ) ) ) |