Metamath Proof Explorer


Theorem lfuhgr3

Description: A hypergraph is loop-free if and only if none of its edges connect to only one vertex. (Contributed by BTernaryTau, 15-Oct-2023)

Ref Expression
Hypotheses lfuhgr3.1 𝑉 = ( Vtx ‘ 𝐺 )
lfuhgr3.2 𝐼 = ( iEdg ‘ 𝐺 )
Assertion lfuhgr3 ( 𝐺 ∈ UHGraph → ( 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ↔ ¬ ∃ 𝑎 { 𝑎 } ∈ ( Edg ‘ 𝐺 ) ) )

Proof

Step Hyp Ref Expression
1 lfuhgr3.1 𝑉 = ( Vtx ‘ 𝐺 )
2 lfuhgr3.2 𝐼 = ( iEdg ‘ 𝐺 )
3 1 2 lfuhgr2 ( 𝐺 ∈ UHGraph → ( 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ↔ ∀ 𝑥 ∈ ( Edg ‘ 𝐺 ) ( ♯ ‘ 𝑥 ) ≠ 1 ) )
4 df-ne ( ( ♯ ‘ 𝑥 ) ≠ 1 ↔ ¬ ( ♯ ‘ 𝑥 ) = 1 )
5 4 ralbii ( ∀ 𝑥 ∈ ( Edg ‘ 𝐺 ) ( ♯ ‘ 𝑥 ) ≠ 1 ↔ ∀ 𝑥 ∈ ( Edg ‘ 𝐺 ) ¬ ( ♯ ‘ 𝑥 ) = 1 )
6 ralnex ( ∀ 𝑥 ∈ ( Edg ‘ 𝐺 ) ¬ ( ♯ ‘ 𝑥 ) = 1 ↔ ¬ ∃ 𝑥 ∈ ( Edg ‘ 𝐺 ) ( ♯ ‘ 𝑥 ) = 1 )
7 df-rex ( ∃ 𝑥 ∈ ( Edg ‘ 𝐺 ) ( ♯ ‘ 𝑥 ) = 1 ↔ ∃ 𝑥 ( 𝑥 ∈ ( Edg ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = 1 ) )
8 7 notbii ( ¬ ∃ 𝑥 ∈ ( Edg ‘ 𝐺 ) ( ♯ ‘ 𝑥 ) = 1 ↔ ¬ ∃ 𝑥 ( 𝑥 ∈ ( Edg ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = 1 ) )
9 5 6 8 3bitri ( ∀ 𝑥 ∈ ( Edg ‘ 𝐺 ) ( ♯ ‘ 𝑥 ) ≠ 1 ↔ ¬ ∃ 𝑥 ( 𝑥 ∈ ( Edg ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = 1 ) )
10 hashen1 ( 𝑥 ∈ V → ( ( ♯ ‘ 𝑥 ) = 1 ↔ 𝑥 ≈ 1o ) )
11 10 elv ( ( ♯ ‘ 𝑥 ) = 1 ↔ 𝑥 ≈ 1o )
12 en1 ( 𝑥 ≈ 1o ↔ ∃ 𝑎 𝑥 = { 𝑎 } )
13 11 12 bitri ( ( ♯ ‘ 𝑥 ) = 1 ↔ ∃ 𝑎 𝑥 = { 𝑎 } )
14 13 anbi2i ( ( 𝑥 ∈ ( Edg ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = 1 ) ↔ ( 𝑥 ∈ ( Edg ‘ 𝐺 ) ∧ ∃ 𝑎 𝑥 = { 𝑎 } ) )
15 14 exbii ( ∃ 𝑥 ( 𝑥 ∈ ( Edg ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = 1 ) ↔ ∃ 𝑥 ( 𝑥 ∈ ( Edg ‘ 𝐺 ) ∧ ∃ 𝑎 𝑥 = { 𝑎 } ) )
16 15 notbii ( ¬ ∃ 𝑥 ( 𝑥 ∈ ( Edg ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = 1 ) ↔ ¬ ∃ 𝑥 ( 𝑥 ∈ ( Edg ‘ 𝐺 ) ∧ ∃ 𝑎 𝑥 = { 𝑎 } ) )
17 19.3v ( ∀ 𝑎 𝑥 ∈ ( Edg ‘ 𝐺 ) ↔ 𝑥 ∈ ( Edg ‘ 𝐺 ) )
18 19.29 ( ( ∀ 𝑎 𝑥 ∈ ( Edg ‘ 𝐺 ) ∧ ∃ 𝑎 𝑥 = { 𝑎 } ) → ∃ 𝑎 ( 𝑥 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑥 = { 𝑎 } ) )
19 17 18 sylanbr ( ( 𝑥 ∈ ( Edg ‘ 𝐺 ) ∧ ∃ 𝑎 𝑥 = { 𝑎 } ) → ∃ 𝑎 ( 𝑥 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑥 = { 𝑎 } ) )
20 eleq1 ( 𝑥 = { 𝑎 } → ( 𝑥 ∈ ( Edg ‘ 𝐺 ) ↔ { 𝑎 } ∈ ( Edg ‘ 𝐺 ) ) )
21 20 biimpac ( ( 𝑥 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑥 = { 𝑎 } ) → { 𝑎 } ∈ ( Edg ‘ 𝐺 ) )
22 21 eximi ( ∃ 𝑎 ( 𝑥 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑥 = { 𝑎 } ) → ∃ 𝑎 { 𝑎 } ∈ ( Edg ‘ 𝐺 ) )
23 19 22 syl ( ( 𝑥 ∈ ( Edg ‘ 𝐺 ) ∧ ∃ 𝑎 𝑥 = { 𝑎 } ) → ∃ 𝑎 { 𝑎 } ∈ ( Edg ‘ 𝐺 ) )
24 23 exlimiv ( ∃ 𝑥 ( 𝑥 ∈ ( Edg ‘ 𝐺 ) ∧ ∃ 𝑎 𝑥 = { 𝑎 } ) → ∃ 𝑎 { 𝑎 } ∈ ( Edg ‘ 𝐺 ) )
25 dfclel ( { 𝑎 } ∈ ( Edg ‘ 𝐺 ) ↔ ∃ 𝑥 ( 𝑥 = { 𝑎 } ∧ 𝑥 ∈ ( Edg ‘ 𝐺 ) ) )
26 pm3.22 ( ( 𝑥 = { 𝑎 } ∧ 𝑥 ∈ ( Edg ‘ 𝐺 ) ) → ( 𝑥 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑥 = { 𝑎 } ) )
27 26 eximi ( ∃ 𝑥 ( 𝑥 = { 𝑎 } ∧ 𝑥 ∈ ( Edg ‘ 𝐺 ) ) → ∃ 𝑥 ( 𝑥 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑥 = { 𝑎 } ) )
28 25 27 sylbi ( { 𝑎 } ∈ ( Edg ‘ 𝐺 ) → ∃ 𝑥 ( 𝑥 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑥 = { 𝑎 } ) )
29 28 eximi ( ∃ 𝑎 { 𝑎 } ∈ ( Edg ‘ 𝐺 ) → ∃ 𝑎𝑥 ( 𝑥 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑥 = { 𝑎 } ) )
30 excomim ( ∃ 𝑎𝑥 ( 𝑥 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑥 = { 𝑎 } ) → ∃ 𝑥𝑎 ( 𝑥 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑥 = { 𝑎 } ) )
31 19.40 ( ∃ 𝑎 ( 𝑥 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑥 = { 𝑎 } ) → ( ∃ 𝑎 𝑥 ∈ ( Edg ‘ 𝐺 ) ∧ ∃ 𝑎 𝑥 = { 𝑎 } ) )
32 ax5e ( ∃ 𝑎 𝑥 ∈ ( Edg ‘ 𝐺 ) → 𝑥 ∈ ( Edg ‘ 𝐺 ) )
33 32 anim1i ( ( ∃ 𝑎 𝑥 ∈ ( Edg ‘ 𝐺 ) ∧ ∃ 𝑎 𝑥 = { 𝑎 } ) → ( 𝑥 ∈ ( Edg ‘ 𝐺 ) ∧ ∃ 𝑎 𝑥 = { 𝑎 } ) )
34 31 33 syl ( ∃ 𝑎 ( 𝑥 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑥 = { 𝑎 } ) → ( 𝑥 ∈ ( Edg ‘ 𝐺 ) ∧ ∃ 𝑎 𝑥 = { 𝑎 } ) )
35 34 eximi ( ∃ 𝑥𝑎 ( 𝑥 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑥 = { 𝑎 } ) → ∃ 𝑥 ( 𝑥 ∈ ( Edg ‘ 𝐺 ) ∧ ∃ 𝑎 𝑥 = { 𝑎 } ) )
36 29 30 35 3syl ( ∃ 𝑎 { 𝑎 } ∈ ( Edg ‘ 𝐺 ) → ∃ 𝑥 ( 𝑥 ∈ ( Edg ‘ 𝐺 ) ∧ ∃ 𝑎 𝑥 = { 𝑎 } ) )
37 24 36 impbii ( ∃ 𝑥 ( 𝑥 ∈ ( Edg ‘ 𝐺 ) ∧ ∃ 𝑎 𝑥 = { 𝑎 } ) ↔ ∃ 𝑎 { 𝑎 } ∈ ( Edg ‘ 𝐺 ) )
38 37 notbii ( ¬ ∃ 𝑥 ( 𝑥 ∈ ( Edg ‘ 𝐺 ) ∧ ∃ 𝑎 𝑥 = { 𝑎 } ) ↔ ¬ ∃ 𝑎 { 𝑎 } ∈ ( Edg ‘ 𝐺 ) )
39 9 16 38 3bitri ( ∀ 𝑥 ∈ ( Edg ‘ 𝐺 ) ( ♯ ‘ 𝑥 ) ≠ 1 ↔ ¬ ∃ 𝑎 { 𝑎 } ∈ ( Edg ‘ 𝐺 ) )
40 3 39 bitrdi ( 𝐺 ∈ UHGraph → ( 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ↔ ¬ ∃ 𝑎 { 𝑎 } ∈ ( Edg ‘ 𝐺 ) ) )