| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lfuhgr.1 |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | lfuhgr.2 |  |-  I = ( iEdg ` G ) | 
						
							| 3 | 1 2 | lfuhgr |  |-  ( G e. UHGraph -> ( I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } <-> A. x e. ( Edg ` G ) 2 <_ ( # ` x ) ) ) | 
						
							| 4 |  | uhgredgn0 |  |-  ( ( G e. UHGraph /\ x e. ( Edg ` G ) ) -> x e. ( ~P ( Vtx ` G ) \ { (/) } ) ) | 
						
							| 5 |  | eldifsni |  |-  ( x e. ( ~P ( Vtx ` G ) \ { (/) } ) -> x =/= (/) ) | 
						
							| 6 | 4 5 | syl |  |-  ( ( G e. UHGraph /\ x e. ( Edg ` G ) ) -> x =/= (/) ) | 
						
							| 7 |  | hashneq0 |  |-  ( x e. _V -> ( 0 < ( # ` x ) <-> x =/= (/) ) ) | 
						
							| 8 | 7 | elv |  |-  ( 0 < ( # ` x ) <-> x =/= (/) ) | 
						
							| 9 | 6 8 | sylibr |  |-  ( ( G e. UHGraph /\ x e. ( Edg ` G ) ) -> 0 < ( # ` x ) ) | 
						
							| 10 | 9 | gt0ne0d |  |-  ( ( G e. UHGraph /\ x e. ( Edg ` G ) ) -> ( # ` x ) =/= 0 ) | 
						
							| 11 |  | hashxnn0 |  |-  ( x e. _V -> ( # ` x ) e. NN0* ) | 
						
							| 12 | 11 | elv |  |-  ( # ` x ) e. NN0* | 
						
							| 13 |  | xnn0n0n1ge2b |  |-  ( ( # ` x ) e. NN0* -> ( ( ( # ` x ) =/= 0 /\ ( # ` x ) =/= 1 ) <-> 2 <_ ( # ` x ) ) ) | 
						
							| 14 | 12 13 | ax-mp |  |-  ( ( ( # ` x ) =/= 0 /\ ( # ` x ) =/= 1 ) <-> 2 <_ ( # ` x ) ) | 
						
							| 15 | 14 | biimpi |  |-  ( ( ( # ` x ) =/= 0 /\ ( # ` x ) =/= 1 ) -> 2 <_ ( # ` x ) ) | 
						
							| 16 | 10 15 | stoic3 |  |-  ( ( G e. UHGraph /\ x e. ( Edg ` G ) /\ ( # ` x ) =/= 1 ) -> 2 <_ ( # ` x ) ) | 
						
							| 17 | 16 | 3exp |  |-  ( G e. UHGraph -> ( x e. ( Edg ` G ) -> ( ( # ` x ) =/= 1 -> 2 <_ ( # ` x ) ) ) ) | 
						
							| 18 | 17 | a2d |  |-  ( G e. UHGraph -> ( ( x e. ( Edg ` G ) -> ( # ` x ) =/= 1 ) -> ( x e. ( Edg ` G ) -> 2 <_ ( # ` x ) ) ) ) | 
						
							| 19 | 18 | ralimdv2 |  |-  ( G e. UHGraph -> ( A. x e. ( Edg ` G ) ( # ` x ) =/= 1 -> A. x e. ( Edg ` G ) 2 <_ ( # ` x ) ) ) | 
						
							| 20 |  | 1xr |  |-  1 e. RR* | 
						
							| 21 |  | hashxrcl |  |-  ( x e. _V -> ( # ` x ) e. RR* ) | 
						
							| 22 | 21 | elv |  |-  ( # ` x ) e. RR* | 
						
							| 23 |  | 1lt2 |  |-  1 < 2 | 
						
							| 24 |  | 2re |  |-  2 e. RR | 
						
							| 25 | 24 | rexri |  |-  2 e. RR* | 
						
							| 26 |  | xrltletr |  |-  ( ( 1 e. RR* /\ 2 e. RR* /\ ( # ` x ) e. RR* ) -> ( ( 1 < 2 /\ 2 <_ ( # ` x ) ) -> 1 < ( # ` x ) ) ) | 
						
							| 27 | 20 25 22 26 | mp3an |  |-  ( ( 1 < 2 /\ 2 <_ ( # ` x ) ) -> 1 < ( # ` x ) ) | 
						
							| 28 | 23 27 | mpan |  |-  ( 2 <_ ( # ` x ) -> 1 < ( # ` x ) ) | 
						
							| 29 |  | xrltne |  |-  ( ( 1 e. RR* /\ ( # ` x ) e. RR* /\ 1 < ( # ` x ) ) -> ( # ` x ) =/= 1 ) | 
						
							| 30 | 20 22 28 29 | mp3an12i |  |-  ( 2 <_ ( # ` x ) -> ( # ` x ) =/= 1 ) | 
						
							| 31 | 30 | ralimi |  |-  ( A. x e. ( Edg ` G ) 2 <_ ( # ` x ) -> A. x e. ( Edg ` G ) ( # ` x ) =/= 1 ) | 
						
							| 32 | 19 31 | impbid1 |  |-  ( G e. UHGraph -> ( A. x e. ( Edg ` G ) ( # ` x ) =/= 1 <-> A. x e. ( Edg ` G ) 2 <_ ( # ` x ) ) ) | 
						
							| 33 | 3 32 | bitr4d |  |-  ( G e. UHGraph -> ( I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } <-> A. x e. ( Edg ` G ) ( # ` x ) =/= 1 ) ) |