| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lfuhgr.1 |
|- V = ( Vtx ` G ) |
| 2 |
|
lfuhgr.2 |
|- I = ( iEdg ` G ) |
| 3 |
1 2
|
lfuhgr |
|- ( G e. UHGraph -> ( I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } <-> A. x e. ( Edg ` G ) 2 <_ ( # ` x ) ) ) |
| 4 |
|
uhgredgn0 |
|- ( ( G e. UHGraph /\ x e. ( Edg ` G ) ) -> x e. ( ~P ( Vtx ` G ) \ { (/) } ) ) |
| 5 |
|
eldifsni |
|- ( x e. ( ~P ( Vtx ` G ) \ { (/) } ) -> x =/= (/) ) |
| 6 |
4 5
|
syl |
|- ( ( G e. UHGraph /\ x e. ( Edg ` G ) ) -> x =/= (/) ) |
| 7 |
|
hashneq0 |
|- ( x e. _V -> ( 0 < ( # ` x ) <-> x =/= (/) ) ) |
| 8 |
7
|
elv |
|- ( 0 < ( # ` x ) <-> x =/= (/) ) |
| 9 |
6 8
|
sylibr |
|- ( ( G e. UHGraph /\ x e. ( Edg ` G ) ) -> 0 < ( # ` x ) ) |
| 10 |
9
|
gt0ne0d |
|- ( ( G e. UHGraph /\ x e. ( Edg ` G ) ) -> ( # ` x ) =/= 0 ) |
| 11 |
|
hashxnn0 |
|- ( x e. _V -> ( # ` x ) e. NN0* ) |
| 12 |
11
|
elv |
|- ( # ` x ) e. NN0* |
| 13 |
|
xnn0n0n1ge2b |
|- ( ( # ` x ) e. NN0* -> ( ( ( # ` x ) =/= 0 /\ ( # ` x ) =/= 1 ) <-> 2 <_ ( # ` x ) ) ) |
| 14 |
12 13
|
ax-mp |
|- ( ( ( # ` x ) =/= 0 /\ ( # ` x ) =/= 1 ) <-> 2 <_ ( # ` x ) ) |
| 15 |
14
|
biimpi |
|- ( ( ( # ` x ) =/= 0 /\ ( # ` x ) =/= 1 ) -> 2 <_ ( # ` x ) ) |
| 16 |
10 15
|
stoic3 |
|- ( ( G e. UHGraph /\ x e. ( Edg ` G ) /\ ( # ` x ) =/= 1 ) -> 2 <_ ( # ` x ) ) |
| 17 |
16
|
3exp |
|- ( G e. UHGraph -> ( x e. ( Edg ` G ) -> ( ( # ` x ) =/= 1 -> 2 <_ ( # ` x ) ) ) ) |
| 18 |
17
|
a2d |
|- ( G e. UHGraph -> ( ( x e. ( Edg ` G ) -> ( # ` x ) =/= 1 ) -> ( x e. ( Edg ` G ) -> 2 <_ ( # ` x ) ) ) ) |
| 19 |
18
|
ralimdv2 |
|- ( G e. UHGraph -> ( A. x e. ( Edg ` G ) ( # ` x ) =/= 1 -> A. x e. ( Edg ` G ) 2 <_ ( # ` x ) ) ) |
| 20 |
|
1xr |
|- 1 e. RR* |
| 21 |
|
hashxrcl |
|- ( x e. _V -> ( # ` x ) e. RR* ) |
| 22 |
21
|
elv |
|- ( # ` x ) e. RR* |
| 23 |
|
1lt2 |
|- 1 < 2 |
| 24 |
|
2re |
|- 2 e. RR |
| 25 |
24
|
rexri |
|- 2 e. RR* |
| 26 |
|
xrltletr |
|- ( ( 1 e. RR* /\ 2 e. RR* /\ ( # ` x ) e. RR* ) -> ( ( 1 < 2 /\ 2 <_ ( # ` x ) ) -> 1 < ( # ` x ) ) ) |
| 27 |
20 25 22 26
|
mp3an |
|- ( ( 1 < 2 /\ 2 <_ ( # ` x ) ) -> 1 < ( # ` x ) ) |
| 28 |
23 27
|
mpan |
|- ( 2 <_ ( # ` x ) -> 1 < ( # ` x ) ) |
| 29 |
|
xrltne |
|- ( ( 1 e. RR* /\ ( # ` x ) e. RR* /\ 1 < ( # ` x ) ) -> ( # ` x ) =/= 1 ) |
| 30 |
20 22 28 29
|
mp3an12i |
|- ( 2 <_ ( # ` x ) -> ( # ` x ) =/= 1 ) |
| 31 |
30
|
ralimi |
|- ( A. x e. ( Edg ` G ) 2 <_ ( # ` x ) -> A. x e. ( Edg ` G ) ( # ` x ) =/= 1 ) |
| 32 |
19 31
|
impbid1 |
|- ( G e. UHGraph -> ( A. x e. ( Edg ` G ) ( # ` x ) =/= 1 <-> A. x e. ( Edg ` G ) 2 <_ ( # ` x ) ) ) |
| 33 |
3 32
|
bitr4d |
|- ( G e. UHGraph -> ( I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } <-> A. x e. ( Edg ` G ) ( # ` x ) =/= 1 ) ) |