Metamath Proof Explorer


Theorem linepmap

Description: A line described with a projective map. (Contributed by NM, 3-Feb-2012)

Ref Expression
Hypotheses isline2.j
|- .\/ = ( join ` K )
isline2.a
|- A = ( Atoms ` K )
isline2.n
|- N = ( Lines ` K )
isline2.m
|- M = ( pmap ` K )
Assertion linepmap
|- ( ( ( K e. Lat /\ P e. A /\ Q e. A ) /\ P =/= Q ) -> ( M ` ( P .\/ Q ) ) e. N )

Proof

Step Hyp Ref Expression
1 isline2.j
 |-  .\/ = ( join ` K )
2 isline2.a
 |-  A = ( Atoms ` K )
3 isline2.n
 |-  N = ( Lines ` K )
4 isline2.m
 |-  M = ( pmap ` K )
5 simpl1
 |-  ( ( ( K e. Lat /\ P e. A /\ Q e. A ) /\ P =/= Q ) -> K e. Lat )
6 simpl2
 |-  ( ( ( K e. Lat /\ P e. A /\ Q e. A ) /\ P =/= Q ) -> P e. A )
7 eqid
 |-  ( Base ` K ) = ( Base ` K )
8 7 2 atbase
 |-  ( P e. A -> P e. ( Base ` K ) )
9 6 8 syl
 |-  ( ( ( K e. Lat /\ P e. A /\ Q e. A ) /\ P =/= Q ) -> P e. ( Base ` K ) )
10 simpl3
 |-  ( ( ( K e. Lat /\ P e. A /\ Q e. A ) /\ P =/= Q ) -> Q e. A )
11 7 2 atbase
 |-  ( Q e. A -> Q e. ( Base ` K ) )
12 10 11 syl
 |-  ( ( ( K e. Lat /\ P e. A /\ Q e. A ) /\ P =/= Q ) -> Q e. ( Base ` K ) )
13 7 1 latjcl
 |-  ( ( K e. Lat /\ P e. ( Base ` K ) /\ Q e. ( Base ` K ) ) -> ( P .\/ Q ) e. ( Base ` K ) )
14 5 9 12 13 syl3anc
 |-  ( ( ( K e. Lat /\ P e. A /\ Q e. A ) /\ P =/= Q ) -> ( P .\/ Q ) e. ( Base ` K ) )
15 eqid
 |-  ( le ` K ) = ( le ` K )
16 7 15 2 4 pmapval
 |-  ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) ) -> ( M ` ( P .\/ Q ) ) = { r e. A | r ( le ` K ) ( P .\/ Q ) } )
17 5 14 16 syl2anc
 |-  ( ( ( K e. Lat /\ P e. A /\ Q e. A ) /\ P =/= Q ) -> ( M ` ( P .\/ Q ) ) = { r e. A | r ( le ` K ) ( P .\/ Q ) } )
18 eqid
 |-  { r e. A | r ( le ` K ) ( P .\/ Q ) } = { r e. A | r ( le ` K ) ( P .\/ Q ) }
19 15 1 2 3 islinei
 |-  ( ( ( K e. Lat /\ P e. A /\ Q e. A ) /\ ( P =/= Q /\ { r e. A | r ( le ` K ) ( P .\/ Q ) } = { r e. A | r ( le ` K ) ( P .\/ Q ) } ) ) -> { r e. A | r ( le ` K ) ( P .\/ Q ) } e. N )
20 18 19 mpanr2
 |-  ( ( ( K e. Lat /\ P e. A /\ Q e. A ) /\ P =/= Q ) -> { r e. A | r ( le ` K ) ( P .\/ Q ) } e. N )
21 17 20 eqeltrd
 |-  ( ( ( K e. Lat /\ P e. A /\ Q e. A ) /\ P =/= Q ) -> ( M ` ( P .\/ Q ) ) e. N )