| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isline2.j |
|- .\/ = ( join ` K ) |
| 2 |
|
isline2.a |
|- A = ( Atoms ` K ) |
| 3 |
|
isline2.n |
|- N = ( Lines ` K ) |
| 4 |
|
isline2.m |
|- M = ( pmap ` K ) |
| 5 |
|
simpl1 |
|- ( ( ( K e. Lat /\ P e. A /\ Q e. A ) /\ P =/= Q ) -> K e. Lat ) |
| 6 |
|
simpl2 |
|- ( ( ( K e. Lat /\ P e. A /\ Q e. A ) /\ P =/= Q ) -> P e. A ) |
| 7 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 8 |
7 2
|
atbase |
|- ( P e. A -> P e. ( Base ` K ) ) |
| 9 |
6 8
|
syl |
|- ( ( ( K e. Lat /\ P e. A /\ Q e. A ) /\ P =/= Q ) -> P e. ( Base ` K ) ) |
| 10 |
|
simpl3 |
|- ( ( ( K e. Lat /\ P e. A /\ Q e. A ) /\ P =/= Q ) -> Q e. A ) |
| 11 |
7 2
|
atbase |
|- ( Q e. A -> Q e. ( Base ` K ) ) |
| 12 |
10 11
|
syl |
|- ( ( ( K e. Lat /\ P e. A /\ Q e. A ) /\ P =/= Q ) -> Q e. ( Base ` K ) ) |
| 13 |
7 1
|
latjcl |
|- ( ( K e. Lat /\ P e. ( Base ` K ) /\ Q e. ( Base ` K ) ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
| 14 |
5 9 12 13
|
syl3anc |
|- ( ( ( K e. Lat /\ P e. A /\ Q e. A ) /\ P =/= Q ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
| 15 |
|
eqid |
|- ( le ` K ) = ( le ` K ) |
| 16 |
7 15 2 4
|
pmapval |
|- ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) ) -> ( M ` ( P .\/ Q ) ) = { r e. A | r ( le ` K ) ( P .\/ Q ) } ) |
| 17 |
5 14 16
|
syl2anc |
|- ( ( ( K e. Lat /\ P e. A /\ Q e. A ) /\ P =/= Q ) -> ( M ` ( P .\/ Q ) ) = { r e. A | r ( le ` K ) ( P .\/ Q ) } ) |
| 18 |
|
eqid |
|- { r e. A | r ( le ` K ) ( P .\/ Q ) } = { r e. A | r ( le ` K ) ( P .\/ Q ) } |
| 19 |
15 1 2 3
|
islinei |
|- ( ( ( K e. Lat /\ P e. A /\ Q e. A ) /\ ( P =/= Q /\ { r e. A | r ( le ` K ) ( P .\/ Q ) } = { r e. A | r ( le ` K ) ( P .\/ Q ) } ) ) -> { r e. A | r ( le ` K ) ( P .\/ Q ) } e. N ) |
| 20 |
18 19
|
mpanr2 |
|- ( ( ( K e. Lat /\ P e. A /\ Q e. A ) /\ P =/= Q ) -> { r e. A | r ( le ` K ) ( P .\/ Q ) } e. N ) |
| 21 |
17 20
|
eqeltrd |
|- ( ( ( K e. Lat /\ P e. A /\ Q e. A ) /\ P =/= Q ) -> ( M ` ( P .\/ Q ) ) e. N ) |