Metamath Proof Explorer


Theorem llnn0

Description: A lattice line is nonzero. (Contributed by NM, 15-Jul-2012)

Ref Expression
Hypotheses llnn0.z
|- .0. = ( 0. ` K )
llnn0.n
|- N = ( LLines ` K )
Assertion llnn0
|- ( ( K e. HL /\ X e. N ) -> X =/= .0. )

Proof

Step Hyp Ref Expression
1 llnn0.z
 |-  .0. = ( 0. ` K )
2 llnn0.n
 |-  N = ( LLines ` K )
3 eqid
 |-  ( Atoms ` K ) = ( Atoms ` K )
4 3 atex
 |-  ( K e. HL -> ( Atoms ` K ) =/= (/) )
5 n0
 |-  ( ( Atoms ` K ) =/= (/) <-> E. p p e. ( Atoms ` K ) )
6 4 5 sylib
 |-  ( K e. HL -> E. p p e. ( Atoms ` K ) )
7 6 adantr
 |-  ( ( K e. HL /\ X e. N ) -> E. p p e. ( Atoms ` K ) )
8 eqid
 |-  ( le ` K ) = ( le ` K )
9 8 3 2 llnnleat
 |-  ( ( K e. HL /\ X e. N /\ p e. ( Atoms ` K ) ) -> -. X ( le ` K ) p )
10 9 3expa
 |-  ( ( ( K e. HL /\ X e. N ) /\ p e. ( Atoms ` K ) ) -> -. X ( le ` K ) p )
11 hlop
 |-  ( K e. HL -> K e. OP )
12 11 ad2antrr
 |-  ( ( ( K e. HL /\ X e. N ) /\ p e. ( Atoms ` K ) ) -> K e. OP )
13 eqid
 |-  ( Base ` K ) = ( Base ` K )
14 13 3 atbase
 |-  ( p e. ( Atoms ` K ) -> p e. ( Base ` K ) )
15 14 adantl
 |-  ( ( ( K e. HL /\ X e. N ) /\ p e. ( Atoms ` K ) ) -> p e. ( Base ` K ) )
16 13 8 1 op0le
 |-  ( ( K e. OP /\ p e. ( Base ` K ) ) -> .0. ( le ` K ) p )
17 12 15 16 syl2anc
 |-  ( ( ( K e. HL /\ X e. N ) /\ p e. ( Atoms ` K ) ) -> .0. ( le ` K ) p )
18 breq1
 |-  ( X = .0. -> ( X ( le ` K ) p <-> .0. ( le ` K ) p ) )
19 17 18 syl5ibrcom
 |-  ( ( ( K e. HL /\ X e. N ) /\ p e. ( Atoms ` K ) ) -> ( X = .0. -> X ( le ` K ) p ) )
20 19 necon3bd
 |-  ( ( ( K e. HL /\ X e. N ) /\ p e. ( Atoms ` K ) ) -> ( -. X ( le ` K ) p -> X =/= .0. ) )
21 10 20 mpd
 |-  ( ( ( K e. HL /\ X e. N ) /\ p e. ( Atoms ` K ) ) -> X =/= .0. )
22 7 21 exlimddv
 |-  ( ( K e. HL /\ X e. N ) -> X =/= .0. )