| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lspprat.v |
|- V = ( Base ` W ) |
| 2 |
|
lspprat.s |
|- S = ( LSubSp ` W ) |
| 3 |
|
lspprat.n |
|- N = ( LSpan ` W ) |
| 4 |
|
lspprat.w |
|- ( ph -> W e. LVec ) |
| 5 |
|
lspprat.u |
|- ( ph -> U e. S ) |
| 6 |
|
lspprat.x |
|- ( ph -> X e. V ) |
| 7 |
|
lspprat.y |
|- ( ph -> Y e. V ) |
| 8 |
|
lspprat.p |
|- ( ph -> U C. ( N ` { X , Y } ) ) |
| 9 |
|
lsppratlem1.o |
|- .0. = ( 0g ` W ) |
| 10 |
|
lsppratlem1.x2 |
|- ( ph -> x e. ( U \ { .0. } ) ) |
| 11 |
|
lsppratlem1.y2 |
|- ( ph -> y e. ( U \ ( N ` { x } ) ) ) |
| 12 |
|
lsppratlem2.x1 |
|- ( ph -> X e. ( N ` { x , y } ) ) |
| 13 |
|
lsppratlem2.y1 |
|- ( ph -> Y e. ( N ` { x , y } ) ) |
| 14 |
|
lveclmod |
|- ( W e. LVec -> W e. LMod ) |
| 15 |
4 14
|
syl |
|- ( ph -> W e. LMod ) |
| 16 |
10
|
eldifad |
|- ( ph -> x e. U ) |
| 17 |
11
|
eldifad |
|- ( ph -> y e. U ) |
| 18 |
16 17
|
prssd |
|- ( ph -> { x , y } C_ U ) |
| 19 |
1 2
|
lssss |
|- ( U e. S -> U C_ V ) |
| 20 |
5 19
|
syl |
|- ( ph -> U C_ V ) |
| 21 |
18 20
|
sstrd |
|- ( ph -> { x , y } C_ V ) |
| 22 |
1 2 3
|
lspcl |
|- ( ( W e. LMod /\ { x , y } C_ V ) -> ( N ` { x , y } ) e. S ) |
| 23 |
15 21 22
|
syl2anc |
|- ( ph -> ( N ` { x , y } ) e. S ) |
| 24 |
2 3 15 23 12 13
|
lspprss |
|- ( ph -> ( N ` { X , Y } ) C_ ( N ` { x , y } ) ) |
| 25 |
2 3 15 5 16 17
|
lspprss |
|- ( ph -> ( N ` { x , y } ) C_ U ) |
| 26 |
24 25
|
sstrd |
|- ( ph -> ( N ` { X , Y } ) C_ U ) |