Metamath Proof Explorer


Theorem lsppratlem2

Description: Lemma for lspprat . Show that if X and Y are both in ( N{ x , y } ) (which will be our goal for each of the two cases above), then ( N{ X , Y } ) C_ U , contradicting the hypothesis for U . (Contributed by NM, 29-Aug-2014) (Revised by Mario Carneiro, 5-Sep-2014)

Ref Expression
Hypotheses lspprat.v
|- V = ( Base ` W )
lspprat.s
|- S = ( LSubSp ` W )
lspprat.n
|- N = ( LSpan ` W )
lspprat.w
|- ( ph -> W e. LVec )
lspprat.u
|- ( ph -> U e. S )
lspprat.x
|- ( ph -> X e. V )
lspprat.y
|- ( ph -> Y e. V )
lspprat.p
|- ( ph -> U C. ( N ` { X , Y } ) )
lsppratlem1.o
|- .0. = ( 0g ` W )
lsppratlem1.x2
|- ( ph -> x e. ( U \ { .0. } ) )
lsppratlem1.y2
|- ( ph -> y e. ( U \ ( N ` { x } ) ) )
lsppratlem2.x1
|- ( ph -> X e. ( N ` { x , y } ) )
lsppratlem2.y1
|- ( ph -> Y e. ( N ` { x , y } ) )
Assertion lsppratlem2
|- ( ph -> ( N ` { X , Y } ) C_ U )

Proof

Step Hyp Ref Expression
1 lspprat.v
 |-  V = ( Base ` W )
2 lspprat.s
 |-  S = ( LSubSp ` W )
3 lspprat.n
 |-  N = ( LSpan ` W )
4 lspprat.w
 |-  ( ph -> W e. LVec )
5 lspprat.u
 |-  ( ph -> U e. S )
6 lspprat.x
 |-  ( ph -> X e. V )
7 lspprat.y
 |-  ( ph -> Y e. V )
8 lspprat.p
 |-  ( ph -> U C. ( N ` { X , Y } ) )
9 lsppratlem1.o
 |-  .0. = ( 0g ` W )
10 lsppratlem1.x2
 |-  ( ph -> x e. ( U \ { .0. } ) )
11 lsppratlem1.y2
 |-  ( ph -> y e. ( U \ ( N ` { x } ) ) )
12 lsppratlem2.x1
 |-  ( ph -> X e. ( N ` { x , y } ) )
13 lsppratlem2.y1
 |-  ( ph -> Y e. ( N ` { x , y } ) )
14 lveclmod
 |-  ( W e. LVec -> W e. LMod )
15 4 14 syl
 |-  ( ph -> W e. LMod )
16 10 eldifad
 |-  ( ph -> x e. U )
17 11 eldifad
 |-  ( ph -> y e. U )
18 16 17 prssd
 |-  ( ph -> { x , y } C_ U )
19 1 2 lssss
 |-  ( U e. S -> U C_ V )
20 5 19 syl
 |-  ( ph -> U C_ V )
21 18 20 sstrd
 |-  ( ph -> { x , y } C_ V )
22 1 2 3 lspcl
 |-  ( ( W e. LMod /\ { x , y } C_ V ) -> ( N ` { x , y } ) e. S )
23 15 21 22 syl2anc
 |-  ( ph -> ( N ` { x , y } ) e. S )
24 2 3 15 23 12 13 lspprss
 |-  ( ph -> ( N ` { X , Y } ) C_ ( N ` { x , y } ) )
25 2 3 15 5 16 17 lspprss
 |-  ( ph -> ( N ` { x , y } ) C_ U )
26 24 25 sstrd
 |-  ( ph -> ( N ` { X , Y } ) C_ U )