Step |
Hyp |
Ref |
Expression |
1 |
|
lspprat.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
lspprat.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
3 |
|
lspprat.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
4 |
|
lspprat.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
5 |
|
lspprat.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) |
6 |
|
lspprat.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
7 |
|
lspprat.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
8 |
|
lspprat.p |
⊢ ( 𝜑 → 𝑈 ⊊ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
9 |
|
lsppratlem1.o |
⊢ 0 = ( 0g ‘ 𝑊 ) |
10 |
|
lsppratlem1.x2 |
⊢ ( 𝜑 → 𝑥 ∈ ( 𝑈 ∖ { 0 } ) ) |
11 |
|
lsppratlem1.y2 |
⊢ ( 𝜑 → 𝑦 ∈ ( 𝑈 ∖ ( 𝑁 ‘ { 𝑥 } ) ) ) |
12 |
|
lsppratlem2.x1 |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑁 ‘ { 𝑥 , 𝑦 } ) ) |
13 |
|
lsppratlem2.y1 |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑁 ‘ { 𝑥 , 𝑦 } ) ) |
14 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
15 |
4 14
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
16 |
10
|
eldifad |
⊢ ( 𝜑 → 𝑥 ∈ 𝑈 ) |
17 |
11
|
eldifad |
⊢ ( 𝜑 → 𝑦 ∈ 𝑈 ) |
18 |
16 17
|
prssd |
⊢ ( 𝜑 → { 𝑥 , 𝑦 } ⊆ 𝑈 ) |
19 |
1 2
|
lssss |
⊢ ( 𝑈 ∈ 𝑆 → 𝑈 ⊆ 𝑉 ) |
20 |
5 19
|
syl |
⊢ ( 𝜑 → 𝑈 ⊆ 𝑉 ) |
21 |
18 20
|
sstrd |
⊢ ( 𝜑 → { 𝑥 , 𝑦 } ⊆ 𝑉 ) |
22 |
1 2 3
|
lspcl |
⊢ ( ( 𝑊 ∈ LMod ∧ { 𝑥 , 𝑦 } ⊆ 𝑉 ) → ( 𝑁 ‘ { 𝑥 , 𝑦 } ) ∈ 𝑆 ) |
23 |
15 21 22
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑥 , 𝑦 } ) ∈ 𝑆 ) |
24 |
2 3 15 23 12 13
|
lspprss |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ⊆ ( 𝑁 ‘ { 𝑥 , 𝑦 } ) ) |
25 |
2 3 15 5 16 17
|
lspprss |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑥 , 𝑦 } ) ⊆ 𝑈 ) |
26 |
24 25
|
sstrd |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ⊆ 𝑈 ) |