Metamath Proof Explorer


Theorem lsppratlem2

Description: Lemma for lspprat . Show that if X and Y are both in ( N{ x , y } ) (which will be our goal for each of the two cases above), then ( N{ X , Y } ) C_ U , contradicting the hypothesis for U . (Contributed by NM, 29-Aug-2014) (Revised by Mario Carneiro, 5-Sep-2014)

Ref Expression
Hypotheses lspprat.v 𝑉 = ( Base ‘ 𝑊 )
lspprat.s 𝑆 = ( LSubSp ‘ 𝑊 )
lspprat.n 𝑁 = ( LSpan ‘ 𝑊 )
lspprat.w ( 𝜑𝑊 ∈ LVec )
lspprat.u ( 𝜑𝑈𝑆 )
lspprat.x ( 𝜑𝑋𝑉 )
lspprat.y ( 𝜑𝑌𝑉 )
lspprat.p ( 𝜑𝑈 ⊊ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) )
lsppratlem1.o 0 = ( 0g𝑊 )
lsppratlem1.x2 ( 𝜑𝑥 ∈ ( 𝑈 ∖ { 0 } ) )
lsppratlem1.y2 ( 𝜑𝑦 ∈ ( 𝑈 ∖ ( 𝑁 ‘ { 𝑥 } ) ) )
lsppratlem2.x1 ( 𝜑𝑋 ∈ ( 𝑁 ‘ { 𝑥 , 𝑦 } ) )
lsppratlem2.y1 ( 𝜑𝑌 ∈ ( 𝑁 ‘ { 𝑥 , 𝑦 } ) )
Assertion lsppratlem2 ( 𝜑 → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ⊆ 𝑈 )

Proof

Step Hyp Ref Expression
1 lspprat.v 𝑉 = ( Base ‘ 𝑊 )
2 lspprat.s 𝑆 = ( LSubSp ‘ 𝑊 )
3 lspprat.n 𝑁 = ( LSpan ‘ 𝑊 )
4 lspprat.w ( 𝜑𝑊 ∈ LVec )
5 lspprat.u ( 𝜑𝑈𝑆 )
6 lspprat.x ( 𝜑𝑋𝑉 )
7 lspprat.y ( 𝜑𝑌𝑉 )
8 lspprat.p ( 𝜑𝑈 ⊊ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) )
9 lsppratlem1.o 0 = ( 0g𝑊 )
10 lsppratlem1.x2 ( 𝜑𝑥 ∈ ( 𝑈 ∖ { 0 } ) )
11 lsppratlem1.y2 ( 𝜑𝑦 ∈ ( 𝑈 ∖ ( 𝑁 ‘ { 𝑥 } ) ) )
12 lsppratlem2.x1 ( 𝜑𝑋 ∈ ( 𝑁 ‘ { 𝑥 , 𝑦 } ) )
13 lsppratlem2.y1 ( 𝜑𝑌 ∈ ( 𝑁 ‘ { 𝑥 , 𝑦 } ) )
14 lveclmod ( 𝑊 ∈ LVec → 𝑊 ∈ LMod )
15 4 14 syl ( 𝜑𝑊 ∈ LMod )
16 10 eldifad ( 𝜑𝑥𝑈 )
17 11 eldifad ( 𝜑𝑦𝑈 )
18 16 17 prssd ( 𝜑 → { 𝑥 , 𝑦 } ⊆ 𝑈 )
19 1 2 lssss ( 𝑈𝑆𝑈𝑉 )
20 5 19 syl ( 𝜑𝑈𝑉 )
21 18 20 sstrd ( 𝜑 → { 𝑥 , 𝑦 } ⊆ 𝑉 )
22 1 2 3 lspcl ( ( 𝑊 ∈ LMod ∧ { 𝑥 , 𝑦 } ⊆ 𝑉 ) → ( 𝑁 ‘ { 𝑥 , 𝑦 } ) ∈ 𝑆 )
23 15 21 22 syl2anc ( 𝜑 → ( 𝑁 ‘ { 𝑥 , 𝑦 } ) ∈ 𝑆 )
24 2 3 15 23 12 13 lspprss ( 𝜑 → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ⊆ ( 𝑁 ‘ { 𝑥 , 𝑦 } ) )
25 2 3 15 5 16 17 lspprss ( 𝜑 → ( 𝑁 ‘ { 𝑥 , 𝑦 } ) ⊆ 𝑈 )
26 24 25 sstrd ( 𝜑 → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ⊆ 𝑈 )