| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lspprat.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | lspprat.s | ⊢ 𝑆  =  ( LSubSp ‘ 𝑊 ) | 
						
							| 3 |  | lspprat.n | ⊢ 𝑁  =  ( LSpan ‘ 𝑊 ) | 
						
							| 4 |  | lspprat.w | ⊢ ( 𝜑  →  𝑊  ∈  LVec ) | 
						
							| 5 |  | lspprat.u | ⊢ ( 𝜑  →  𝑈  ∈  𝑆 ) | 
						
							| 6 |  | lspprat.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 7 |  | lspprat.y | ⊢ ( 𝜑  →  𝑌  ∈  𝑉 ) | 
						
							| 8 |  | lspprat.p | ⊢ ( 𝜑  →  𝑈  ⊊  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) ) | 
						
							| 9 |  | lsppratlem1.o | ⊢  0   =  ( 0g ‘ 𝑊 ) | 
						
							| 10 |  | lsppratlem1.x2 | ⊢ ( 𝜑  →  𝑥  ∈  ( 𝑈  ∖  {  0  } ) ) | 
						
							| 11 |  | lsppratlem1.y2 | ⊢ ( 𝜑  →  𝑦  ∈  ( 𝑈  ∖  ( 𝑁 ‘ { 𝑥 } ) ) ) | 
						
							| 12 |  | lsppratlem3.x3 | ⊢ ( 𝜑  →  𝑥  ∈  ( 𝑁 ‘ { 𝑌 } ) ) | 
						
							| 13 |  | lveclmod | ⊢ ( 𝑊  ∈  LVec  →  𝑊  ∈  LMod ) | 
						
							| 14 | 4 13 | syl | ⊢ ( 𝜑  →  𝑊  ∈  LMod ) | 
						
							| 15 | 7 | snssd | ⊢ ( 𝜑  →  { 𝑌 }  ⊆  𝑉 ) | 
						
							| 16 | 1 3 | lspssv | ⊢ ( ( 𝑊  ∈  LMod  ∧  { 𝑌 }  ⊆  𝑉 )  →  ( 𝑁 ‘ { 𝑌 } )  ⊆  𝑉 ) | 
						
							| 17 | 14 15 16 | syl2anc | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑌 } )  ⊆  𝑉 ) | 
						
							| 18 | 17 12 | sseldd | ⊢ ( 𝜑  →  𝑥  ∈  𝑉 ) | 
						
							| 19 | 18 | snssd | ⊢ ( 𝜑  →  { 𝑥 }  ⊆  𝑉 ) | 
						
							| 20 | 8 | pssssd | ⊢ ( 𝜑  →  𝑈  ⊆  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) ) | 
						
							| 21 | 6 | snssd | ⊢ ( 𝜑  →  { 𝑋 }  ⊆  𝑉 ) | 
						
							| 22 | 19 21 | unssd | ⊢ ( 𝜑  →  ( { 𝑥 }  ∪  { 𝑋 } )  ⊆  𝑉 ) | 
						
							| 23 | 1 2 3 | lspcl | ⊢ ( ( 𝑊  ∈  LMod  ∧  ( { 𝑥 }  ∪  { 𝑋 } )  ⊆  𝑉 )  →  ( 𝑁 ‘ ( { 𝑥 }  ∪  { 𝑋 } ) )  ∈  𝑆 ) | 
						
							| 24 | 14 22 23 | syl2anc | ⊢ ( 𝜑  →  ( 𝑁 ‘ ( { 𝑥 }  ∪  { 𝑋 } ) )  ∈  𝑆 ) | 
						
							| 25 |  | df-pr | ⊢ { 𝑋 ,  𝑌 }  =  ( { 𝑋 }  ∪  { 𝑌 } ) | 
						
							| 26 | 1 3 | lspssid | ⊢ ( ( 𝑊  ∈  LMod  ∧  ( { 𝑥 }  ∪  { 𝑋 } )  ⊆  𝑉 )  →  ( { 𝑥 }  ∪  { 𝑋 } )  ⊆  ( 𝑁 ‘ ( { 𝑥 }  ∪  { 𝑋 } ) ) ) | 
						
							| 27 | 14 22 26 | syl2anc | ⊢ ( 𝜑  →  ( { 𝑥 }  ∪  { 𝑋 } )  ⊆  ( 𝑁 ‘ ( { 𝑥 }  ∪  { 𝑋 } ) ) ) | 
						
							| 28 | 27 | unssbd | ⊢ ( 𝜑  →  { 𝑋 }  ⊆  ( 𝑁 ‘ ( { 𝑥 }  ∪  { 𝑋 } ) ) ) | 
						
							| 29 |  | ssun1 | ⊢ { 𝑥 }  ⊆  ( { 𝑥 }  ∪  { 𝑋 } ) | 
						
							| 30 | 29 | a1i | ⊢ ( 𝜑  →  { 𝑥 }  ⊆  ( { 𝑥 }  ∪  { 𝑋 } ) ) | 
						
							| 31 | 1 3 | lspss | ⊢ ( ( 𝑊  ∈  LMod  ∧  ( { 𝑥 }  ∪  { 𝑋 } )  ⊆  𝑉  ∧  { 𝑥 }  ⊆  ( { 𝑥 }  ∪  { 𝑋 } ) )  →  ( 𝑁 ‘ { 𝑥 } )  ⊆  ( 𝑁 ‘ ( { 𝑥 }  ∪  { 𝑋 } ) ) ) | 
						
							| 32 | 14 22 30 31 | syl3anc | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑥 } )  ⊆  ( 𝑁 ‘ ( { 𝑥 }  ∪  { 𝑋 } ) ) ) | 
						
							| 33 |  | 0ss | ⊢ ∅  ⊆  𝑉 | 
						
							| 34 | 33 | a1i | ⊢ ( 𝜑  →  ∅  ⊆  𝑉 ) | 
						
							| 35 |  | uncom | ⊢ ( ∅  ∪  { 𝑌 } )  =  ( { 𝑌 }  ∪  ∅ ) | 
						
							| 36 |  | un0 | ⊢ ( { 𝑌 }  ∪  ∅ )  =  { 𝑌 } | 
						
							| 37 | 35 36 | eqtri | ⊢ ( ∅  ∪  { 𝑌 } )  =  { 𝑌 } | 
						
							| 38 | 37 | fveq2i | ⊢ ( 𝑁 ‘ ( ∅  ∪  { 𝑌 } ) )  =  ( 𝑁 ‘ { 𝑌 } ) | 
						
							| 39 | 12 38 | eleqtrrdi | ⊢ ( 𝜑  →  𝑥  ∈  ( 𝑁 ‘ ( ∅  ∪  { 𝑌 } ) ) ) | 
						
							| 40 | 10 | eldifbd | ⊢ ( 𝜑  →  ¬  𝑥  ∈  {  0  } ) | 
						
							| 41 | 9 3 | lsp0 | ⊢ ( 𝑊  ∈  LMod  →  ( 𝑁 ‘ ∅ )  =  {  0  } ) | 
						
							| 42 | 14 41 | syl | ⊢ ( 𝜑  →  ( 𝑁 ‘ ∅ )  =  {  0  } ) | 
						
							| 43 | 40 42 | neleqtrrd | ⊢ ( 𝜑  →  ¬  𝑥  ∈  ( 𝑁 ‘ ∅ ) ) | 
						
							| 44 | 39 43 | eldifd | ⊢ ( 𝜑  →  𝑥  ∈  ( ( 𝑁 ‘ ( ∅  ∪  { 𝑌 } ) )  ∖  ( 𝑁 ‘ ∅ ) ) ) | 
						
							| 45 | 1 2 3 | lspsolv | ⊢ ( ( 𝑊  ∈  LVec  ∧  ( ∅  ⊆  𝑉  ∧  𝑌  ∈  𝑉  ∧  𝑥  ∈  ( ( 𝑁 ‘ ( ∅  ∪  { 𝑌 } ) )  ∖  ( 𝑁 ‘ ∅ ) ) ) )  →  𝑌  ∈  ( 𝑁 ‘ ( ∅  ∪  { 𝑥 } ) ) ) | 
						
							| 46 | 4 34 7 44 45 | syl13anc | ⊢ ( 𝜑  →  𝑌  ∈  ( 𝑁 ‘ ( ∅  ∪  { 𝑥 } ) ) ) | 
						
							| 47 |  | uncom | ⊢ ( ∅  ∪  { 𝑥 } )  =  ( { 𝑥 }  ∪  ∅ ) | 
						
							| 48 |  | un0 | ⊢ ( { 𝑥 }  ∪  ∅ )  =  { 𝑥 } | 
						
							| 49 | 47 48 | eqtri | ⊢ ( ∅  ∪  { 𝑥 } )  =  { 𝑥 } | 
						
							| 50 | 49 | fveq2i | ⊢ ( 𝑁 ‘ ( ∅  ∪  { 𝑥 } ) )  =  ( 𝑁 ‘ { 𝑥 } ) | 
						
							| 51 | 46 50 | eleqtrdi | ⊢ ( 𝜑  →  𝑌  ∈  ( 𝑁 ‘ { 𝑥 } ) ) | 
						
							| 52 | 32 51 | sseldd | ⊢ ( 𝜑  →  𝑌  ∈  ( 𝑁 ‘ ( { 𝑥 }  ∪  { 𝑋 } ) ) ) | 
						
							| 53 | 52 | snssd | ⊢ ( 𝜑  →  { 𝑌 }  ⊆  ( 𝑁 ‘ ( { 𝑥 }  ∪  { 𝑋 } ) ) ) | 
						
							| 54 | 28 53 | unssd | ⊢ ( 𝜑  →  ( { 𝑋 }  ∪  { 𝑌 } )  ⊆  ( 𝑁 ‘ ( { 𝑥 }  ∪  { 𝑋 } ) ) ) | 
						
							| 55 | 25 54 | eqsstrid | ⊢ ( 𝜑  →  { 𝑋 ,  𝑌 }  ⊆  ( 𝑁 ‘ ( { 𝑥 }  ∪  { 𝑋 } ) ) ) | 
						
							| 56 | 2 3 | lspssp | ⊢ ( ( 𝑊  ∈  LMod  ∧  ( 𝑁 ‘ ( { 𝑥 }  ∪  { 𝑋 } ) )  ∈  𝑆  ∧  { 𝑋 ,  𝑌 }  ⊆  ( 𝑁 ‘ ( { 𝑥 }  ∪  { 𝑋 } ) ) )  →  ( 𝑁 ‘ { 𝑋 ,  𝑌 } )  ⊆  ( 𝑁 ‘ ( { 𝑥 }  ∪  { 𝑋 } ) ) ) | 
						
							| 57 | 14 24 55 56 | syl3anc | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑋 ,  𝑌 } )  ⊆  ( 𝑁 ‘ ( { 𝑥 }  ∪  { 𝑋 } ) ) ) | 
						
							| 58 | 20 57 | sstrd | ⊢ ( 𝜑  →  𝑈  ⊆  ( 𝑁 ‘ ( { 𝑥 }  ∪  { 𝑋 } ) ) ) | 
						
							| 59 | 58 | ssdifd | ⊢ ( 𝜑  →  ( 𝑈  ∖  ( 𝑁 ‘ { 𝑥 } ) )  ⊆  ( ( 𝑁 ‘ ( { 𝑥 }  ∪  { 𝑋 } ) )  ∖  ( 𝑁 ‘ { 𝑥 } ) ) ) | 
						
							| 60 | 59 11 | sseldd | ⊢ ( 𝜑  →  𝑦  ∈  ( ( 𝑁 ‘ ( { 𝑥 }  ∪  { 𝑋 } ) )  ∖  ( 𝑁 ‘ { 𝑥 } ) ) ) | 
						
							| 61 | 1 2 3 | lspsolv | ⊢ ( ( 𝑊  ∈  LVec  ∧  ( { 𝑥 }  ⊆  𝑉  ∧  𝑋  ∈  𝑉  ∧  𝑦  ∈  ( ( 𝑁 ‘ ( { 𝑥 }  ∪  { 𝑋 } ) )  ∖  ( 𝑁 ‘ { 𝑥 } ) ) ) )  →  𝑋  ∈  ( 𝑁 ‘ ( { 𝑥 }  ∪  { 𝑦 } ) ) ) | 
						
							| 62 | 4 19 6 60 61 | syl13anc | ⊢ ( 𝜑  →  𝑋  ∈  ( 𝑁 ‘ ( { 𝑥 }  ∪  { 𝑦 } ) ) ) | 
						
							| 63 |  | df-pr | ⊢ { 𝑥 ,  𝑦 }  =  ( { 𝑥 }  ∪  { 𝑦 } ) | 
						
							| 64 | 63 | fveq2i | ⊢ ( 𝑁 ‘ { 𝑥 ,  𝑦 } )  =  ( 𝑁 ‘ ( { 𝑥 }  ∪  { 𝑦 } ) ) | 
						
							| 65 | 62 64 | eleqtrrdi | ⊢ ( 𝜑  →  𝑋  ∈  ( 𝑁 ‘ { 𝑥 ,  𝑦 } ) ) | 
						
							| 66 | 1 2 | lssss | ⊢ ( 𝑈  ∈  𝑆  →  𝑈  ⊆  𝑉 ) | 
						
							| 67 | 5 66 | syl | ⊢ ( 𝜑  →  𝑈  ⊆  𝑉 ) | 
						
							| 68 | 67 | ssdifssd | ⊢ ( 𝜑  →  ( 𝑈  ∖  ( 𝑁 ‘ { 𝑥 } ) )  ⊆  𝑉 ) | 
						
							| 69 | 68 11 | sseldd | ⊢ ( 𝜑  →  𝑦  ∈  𝑉 ) | 
						
							| 70 | 18 69 | prssd | ⊢ ( 𝜑  →  { 𝑥 ,  𝑦 }  ⊆  𝑉 ) | 
						
							| 71 |  | snsspr1 | ⊢ { 𝑥 }  ⊆  { 𝑥 ,  𝑦 } | 
						
							| 72 | 71 | a1i | ⊢ ( 𝜑  →  { 𝑥 }  ⊆  { 𝑥 ,  𝑦 } ) | 
						
							| 73 | 1 3 | lspss | ⊢ ( ( 𝑊  ∈  LMod  ∧  { 𝑥 ,  𝑦 }  ⊆  𝑉  ∧  { 𝑥 }  ⊆  { 𝑥 ,  𝑦 } )  →  ( 𝑁 ‘ { 𝑥 } )  ⊆  ( 𝑁 ‘ { 𝑥 ,  𝑦 } ) ) | 
						
							| 74 | 14 70 72 73 | syl3anc | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑥 } )  ⊆  ( 𝑁 ‘ { 𝑥 ,  𝑦 } ) ) | 
						
							| 75 | 74 51 | sseldd | ⊢ ( 𝜑  →  𝑌  ∈  ( 𝑁 ‘ { 𝑥 ,  𝑦 } ) ) | 
						
							| 76 | 65 75 | jca | ⊢ ( 𝜑  →  ( 𝑋  ∈  ( 𝑁 ‘ { 𝑥 ,  𝑦 } )  ∧  𝑌  ∈  ( 𝑁 ‘ { 𝑥 ,  𝑦 } ) ) ) |