Step |
Hyp |
Ref |
Expression |
1 |
|
lspprat.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
lspprat.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
3 |
|
lspprat.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
4 |
|
lspprat.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
5 |
|
lspprat.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) |
6 |
|
lspprat.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
7 |
|
lspprat.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
8 |
|
lspprat.p |
⊢ ( 𝜑 → 𝑈 ⊊ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
9 |
|
lsppratlem1.o |
⊢ 0 = ( 0g ‘ 𝑊 ) |
10 |
|
lsppratlem1.x2 |
⊢ ( 𝜑 → 𝑥 ∈ ( 𝑈 ∖ { 0 } ) ) |
11 |
|
lsppratlem1.y2 |
⊢ ( 𝜑 → 𝑦 ∈ ( 𝑈 ∖ ( 𝑁 ‘ { 𝑥 } ) ) ) |
12 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝑌 } ) ) → 𝑊 ∈ LVec ) |
13 |
7
|
snssd |
⊢ ( 𝜑 → { 𝑌 } ⊆ 𝑉 ) |
14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝑌 } ) ) → { 𝑌 } ⊆ 𝑉 ) |
15 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝑌 } ) ) → 𝑋 ∈ 𝑉 ) |
16 |
8
|
pssssd |
⊢ ( 𝜑 → 𝑈 ⊆ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
17 |
10
|
eldifad |
⊢ ( 𝜑 → 𝑥 ∈ 𝑈 ) |
18 |
16 17
|
sseldd |
⊢ ( 𝜑 → 𝑥 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
19 |
|
prcom |
⊢ { 𝑋 , 𝑌 } = { 𝑌 , 𝑋 } |
20 |
|
df-pr |
⊢ { 𝑌 , 𝑋 } = ( { 𝑌 } ∪ { 𝑋 } ) |
21 |
19 20
|
eqtri |
⊢ { 𝑋 , 𝑌 } = ( { 𝑌 } ∪ { 𝑋 } ) |
22 |
21
|
fveq2i |
⊢ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) = ( 𝑁 ‘ ( { 𝑌 } ∪ { 𝑋 } ) ) |
23 |
18 22
|
eleqtrdi |
⊢ ( 𝜑 → 𝑥 ∈ ( 𝑁 ‘ ( { 𝑌 } ∪ { 𝑋 } ) ) ) |
24 |
23
|
anim1i |
⊢ ( ( 𝜑 ∧ ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝑌 } ) ) → ( 𝑥 ∈ ( 𝑁 ‘ ( { 𝑌 } ∪ { 𝑋 } ) ) ∧ ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝑌 } ) ) ) |
25 |
|
eldif |
⊢ ( 𝑥 ∈ ( ( 𝑁 ‘ ( { 𝑌 } ∪ { 𝑋 } ) ) ∖ ( 𝑁 ‘ { 𝑌 } ) ) ↔ ( 𝑥 ∈ ( 𝑁 ‘ ( { 𝑌 } ∪ { 𝑋 } ) ) ∧ ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝑌 } ) ) ) |
26 |
24 25
|
sylibr |
⊢ ( ( 𝜑 ∧ ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝑌 } ) ) → 𝑥 ∈ ( ( 𝑁 ‘ ( { 𝑌 } ∪ { 𝑋 } ) ) ∖ ( 𝑁 ‘ { 𝑌 } ) ) ) |
27 |
1 2 3
|
lspsolv |
⊢ ( ( 𝑊 ∈ LVec ∧ ( { 𝑌 } ⊆ 𝑉 ∧ 𝑋 ∈ 𝑉 ∧ 𝑥 ∈ ( ( 𝑁 ‘ ( { 𝑌 } ∪ { 𝑋 } ) ) ∖ ( 𝑁 ‘ { 𝑌 } ) ) ) ) → 𝑋 ∈ ( 𝑁 ‘ ( { 𝑌 } ∪ { 𝑥 } ) ) ) |
28 |
12 14 15 26 27
|
syl13anc |
⊢ ( ( 𝜑 ∧ ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝑌 } ) ) → 𝑋 ∈ ( 𝑁 ‘ ( { 𝑌 } ∪ { 𝑥 } ) ) ) |
29 |
|
df-pr |
⊢ { 𝑌 , 𝑥 } = ( { 𝑌 } ∪ { 𝑥 } ) |
30 |
|
prcom |
⊢ { 𝑌 , 𝑥 } = { 𝑥 , 𝑌 } |
31 |
29 30
|
eqtr3i |
⊢ ( { 𝑌 } ∪ { 𝑥 } ) = { 𝑥 , 𝑌 } |
32 |
31
|
fveq2i |
⊢ ( 𝑁 ‘ ( { 𝑌 } ∪ { 𝑥 } ) ) = ( 𝑁 ‘ { 𝑥 , 𝑌 } ) |
33 |
28 32
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝑌 } ) ) → 𝑋 ∈ ( 𝑁 ‘ { 𝑥 , 𝑌 } ) ) |
34 |
33
|
ex |
⊢ ( 𝜑 → ( ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝑌 } ) → 𝑋 ∈ ( 𝑁 ‘ { 𝑥 , 𝑌 } ) ) ) |
35 |
34
|
orrd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑁 ‘ { 𝑌 } ) ∨ 𝑋 ∈ ( 𝑁 ‘ { 𝑥 , 𝑌 } ) ) ) |