Metamath Proof Explorer


Theorem lspprat

Description: A proper subspace of the span of a pair of vectors is the span of a singleton (an atom) or the zero subspace (if z is zero). Proof suggested by Mario Carneiro, 28-Aug-2014. (Contributed by NM, 29-Aug-2014)

Ref Expression
Hypotheses lspprat.v 𝑉 = ( Base ‘ 𝑊 )
lspprat.s 𝑆 = ( LSubSp ‘ 𝑊 )
lspprat.n 𝑁 = ( LSpan ‘ 𝑊 )
lspprat.w ( 𝜑𝑊 ∈ LVec )
lspprat.u ( 𝜑𝑈𝑆 )
lspprat.x ( 𝜑𝑋𝑉 )
lspprat.y ( 𝜑𝑌𝑉 )
lspprat.p ( 𝜑𝑈 ⊊ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) )
Assertion lspprat ( 𝜑 → ∃ 𝑧𝑉 𝑈 = ( 𝑁 ‘ { 𝑧 } ) )

Proof

Step Hyp Ref Expression
1 lspprat.v 𝑉 = ( Base ‘ 𝑊 )
2 lspprat.s 𝑆 = ( LSubSp ‘ 𝑊 )
3 lspprat.n 𝑁 = ( LSpan ‘ 𝑊 )
4 lspprat.w ( 𝜑𝑊 ∈ LVec )
5 lspprat.u ( 𝜑𝑈𝑆 )
6 lspprat.x ( 𝜑𝑋𝑉 )
7 lspprat.y ( 𝜑𝑌𝑉 )
8 lspprat.p ( 𝜑𝑈 ⊊ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) )
9 ssdif0 ( 𝑈 ⊆ { ( 0g𝑊 ) } ↔ ( 𝑈 ∖ { ( 0g𝑊 ) } ) = ∅ )
10 lveclmod ( 𝑊 ∈ LVec → 𝑊 ∈ LMod )
11 4 10 syl ( 𝜑𝑊 ∈ LMod )
12 eqid ( 0g𝑊 ) = ( 0g𝑊 )
13 1 12 lmod0vcl ( 𝑊 ∈ LMod → ( 0g𝑊 ) ∈ 𝑉 )
14 11 13 syl ( 𝜑 → ( 0g𝑊 ) ∈ 𝑉 )
15 14 adantr ( ( 𝜑𝑈 ⊆ { ( 0g𝑊 ) } ) → ( 0g𝑊 ) ∈ 𝑉 )
16 simpr ( ( 𝜑𝑈 ⊆ { ( 0g𝑊 ) } ) → 𝑈 ⊆ { ( 0g𝑊 ) } )
17 12 2 lss0ss ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆 ) → { ( 0g𝑊 ) } ⊆ 𝑈 )
18 11 5 17 syl2anc ( 𝜑 → { ( 0g𝑊 ) } ⊆ 𝑈 )
19 18 adantr ( ( 𝜑𝑈 ⊆ { ( 0g𝑊 ) } ) → { ( 0g𝑊 ) } ⊆ 𝑈 )
20 16 19 eqssd ( ( 𝜑𝑈 ⊆ { ( 0g𝑊 ) } ) → 𝑈 = { ( 0g𝑊 ) } )
21 12 3 lspsn0 ( 𝑊 ∈ LMod → ( 𝑁 ‘ { ( 0g𝑊 ) } ) = { ( 0g𝑊 ) } )
22 11 21 syl ( 𝜑 → ( 𝑁 ‘ { ( 0g𝑊 ) } ) = { ( 0g𝑊 ) } )
23 22 adantr ( ( 𝜑𝑈 ⊆ { ( 0g𝑊 ) } ) → ( 𝑁 ‘ { ( 0g𝑊 ) } ) = { ( 0g𝑊 ) } )
24 20 23 eqtr4d ( ( 𝜑𝑈 ⊆ { ( 0g𝑊 ) } ) → 𝑈 = ( 𝑁 ‘ { ( 0g𝑊 ) } ) )
25 sneq ( 𝑧 = ( 0g𝑊 ) → { 𝑧 } = { ( 0g𝑊 ) } )
26 25 fveq2d ( 𝑧 = ( 0g𝑊 ) → ( 𝑁 ‘ { 𝑧 } ) = ( 𝑁 ‘ { ( 0g𝑊 ) } ) )
27 26 rspceeqv ( ( ( 0g𝑊 ) ∈ 𝑉𝑈 = ( 𝑁 ‘ { ( 0g𝑊 ) } ) ) → ∃ 𝑧𝑉 𝑈 = ( 𝑁 ‘ { 𝑧 } ) )
28 15 24 27 syl2anc ( ( 𝜑𝑈 ⊆ { ( 0g𝑊 ) } ) → ∃ 𝑧𝑉 𝑈 = ( 𝑁 ‘ { 𝑧 } ) )
29 28 ex ( 𝜑 → ( 𝑈 ⊆ { ( 0g𝑊 ) } → ∃ 𝑧𝑉 𝑈 = ( 𝑁 ‘ { 𝑧 } ) ) )
30 9 29 syl5bir ( 𝜑 → ( ( 𝑈 ∖ { ( 0g𝑊 ) } ) = ∅ → ∃ 𝑧𝑉 𝑈 = ( 𝑁 ‘ { 𝑧 } ) ) )
31 1 2 lssss ( 𝑈𝑆𝑈𝑉 )
32 5 31 syl ( 𝜑𝑈𝑉 )
33 32 ssdifssd ( 𝜑 → ( 𝑈 ∖ { ( 0g𝑊 ) } ) ⊆ 𝑉 )
34 33 sseld ( 𝜑 → ( 𝑧 ∈ ( 𝑈 ∖ { ( 0g𝑊 ) } ) → 𝑧𝑉 ) )
35 1 2 3 4 5 6 7 8 12 lsppratlem6 ( 𝜑 → ( 𝑧 ∈ ( 𝑈 ∖ { ( 0g𝑊 ) } ) → 𝑈 = ( 𝑁 ‘ { 𝑧 } ) ) )
36 34 35 jcad ( 𝜑 → ( 𝑧 ∈ ( 𝑈 ∖ { ( 0g𝑊 ) } ) → ( 𝑧𝑉𝑈 = ( 𝑁 ‘ { 𝑧 } ) ) ) )
37 36 eximdv ( 𝜑 → ( ∃ 𝑧 𝑧 ∈ ( 𝑈 ∖ { ( 0g𝑊 ) } ) → ∃ 𝑧 ( 𝑧𝑉𝑈 = ( 𝑁 ‘ { 𝑧 } ) ) ) )
38 n0 ( ( 𝑈 ∖ { ( 0g𝑊 ) } ) ≠ ∅ ↔ ∃ 𝑧 𝑧 ∈ ( 𝑈 ∖ { ( 0g𝑊 ) } ) )
39 df-rex ( ∃ 𝑧𝑉 𝑈 = ( 𝑁 ‘ { 𝑧 } ) ↔ ∃ 𝑧 ( 𝑧𝑉𝑈 = ( 𝑁 ‘ { 𝑧 } ) ) )
40 37 38 39 3imtr4g ( 𝜑 → ( ( 𝑈 ∖ { ( 0g𝑊 ) } ) ≠ ∅ → ∃ 𝑧𝑉 𝑈 = ( 𝑁 ‘ { 𝑧 } ) ) )
41 30 40 pm2.61dne ( 𝜑 → ∃ 𝑧𝑉 𝑈 = ( 𝑁 ‘ { 𝑧 } ) )