| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lspprat.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
lspprat.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
| 3 |
|
lspprat.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
| 4 |
|
lspprat.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
| 5 |
|
lspprat.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) |
| 6 |
|
lspprat.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 7 |
|
lspprat.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
| 8 |
|
lspprat.p |
⊢ ( 𝜑 → 𝑈 ⊊ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
| 9 |
|
ssdif0 |
⊢ ( 𝑈 ⊆ { ( 0g ‘ 𝑊 ) } ↔ ( 𝑈 ∖ { ( 0g ‘ 𝑊 ) } ) = ∅ ) |
| 10 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
| 11 |
4 10
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 12 |
|
eqid |
⊢ ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑊 ) |
| 13 |
1 12
|
lmod0vcl |
⊢ ( 𝑊 ∈ LMod → ( 0g ‘ 𝑊 ) ∈ 𝑉 ) |
| 14 |
11 13
|
syl |
⊢ ( 𝜑 → ( 0g ‘ 𝑊 ) ∈ 𝑉 ) |
| 15 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑈 ⊆ { ( 0g ‘ 𝑊 ) } ) → ( 0g ‘ 𝑊 ) ∈ 𝑉 ) |
| 16 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑈 ⊆ { ( 0g ‘ 𝑊 ) } ) → 𝑈 ⊆ { ( 0g ‘ 𝑊 ) } ) |
| 17 |
12 2
|
lss0ss |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → { ( 0g ‘ 𝑊 ) } ⊆ 𝑈 ) |
| 18 |
11 5 17
|
syl2anc |
⊢ ( 𝜑 → { ( 0g ‘ 𝑊 ) } ⊆ 𝑈 ) |
| 19 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑈 ⊆ { ( 0g ‘ 𝑊 ) } ) → { ( 0g ‘ 𝑊 ) } ⊆ 𝑈 ) |
| 20 |
16 19
|
eqssd |
⊢ ( ( 𝜑 ∧ 𝑈 ⊆ { ( 0g ‘ 𝑊 ) } ) → 𝑈 = { ( 0g ‘ 𝑊 ) } ) |
| 21 |
12 3
|
lspsn0 |
⊢ ( 𝑊 ∈ LMod → ( 𝑁 ‘ { ( 0g ‘ 𝑊 ) } ) = { ( 0g ‘ 𝑊 ) } ) |
| 22 |
11 21
|
syl |
⊢ ( 𝜑 → ( 𝑁 ‘ { ( 0g ‘ 𝑊 ) } ) = { ( 0g ‘ 𝑊 ) } ) |
| 23 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑈 ⊆ { ( 0g ‘ 𝑊 ) } ) → ( 𝑁 ‘ { ( 0g ‘ 𝑊 ) } ) = { ( 0g ‘ 𝑊 ) } ) |
| 24 |
20 23
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑈 ⊆ { ( 0g ‘ 𝑊 ) } ) → 𝑈 = ( 𝑁 ‘ { ( 0g ‘ 𝑊 ) } ) ) |
| 25 |
|
sneq |
⊢ ( 𝑧 = ( 0g ‘ 𝑊 ) → { 𝑧 } = { ( 0g ‘ 𝑊 ) } ) |
| 26 |
25
|
fveq2d |
⊢ ( 𝑧 = ( 0g ‘ 𝑊 ) → ( 𝑁 ‘ { 𝑧 } ) = ( 𝑁 ‘ { ( 0g ‘ 𝑊 ) } ) ) |
| 27 |
26
|
rspceeqv |
⊢ ( ( ( 0g ‘ 𝑊 ) ∈ 𝑉 ∧ 𝑈 = ( 𝑁 ‘ { ( 0g ‘ 𝑊 ) } ) ) → ∃ 𝑧 ∈ 𝑉 𝑈 = ( 𝑁 ‘ { 𝑧 } ) ) |
| 28 |
15 24 27
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑈 ⊆ { ( 0g ‘ 𝑊 ) } ) → ∃ 𝑧 ∈ 𝑉 𝑈 = ( 𝑁 ‘ { 𝑧 } ) ) |
| 29 |
28
|
ex |
⊢ ( 𝜑 → ( 𝑈 ⊆ { ( 0g ‘ 𝑊 ) } → ∃ 𝑧 ∈ 𝑉 𝑈 = ( 𝑁 ‘ { 𝑧 } ) ) ) |
| 30 |
9 29
|
biimtrrid |
⊢ ( 𝜑 → ( ( 𝑈 ∖ { ( 0g ‘ 𝑊 ) } ) = ∅ → ∃ 𝑧 ∈ 𝑉 𝑈 = ( 𝑁 ‘ { 𝑧 } ) ) ) |
| 31 |
1 2
|
lssss |
⊢ ( 𝑈 ∈ 𝑆 → 𝑈 ⊆ 𝑉 ) |
| 32 |
5 31
|
syl |
⊢ ( 𝜑 → 𝑈 ⊆ 𝑉 ) |
| 33 |
32
|
ssdifssd |
⊢ ( 𝜑 → ( 𝑈 ∖ { ( 0g ‘ 𝑊 ) } ) ⊆ 𝑉 ) |
| 34 |
33
|
sseld |
⊢ ( 𝜑 → ( 𝑧 ∈ ( 𝑈 ∖ { ( 0g ‘ 𝑊 ) } ) → 𝑧 ∈ 𝑉 ) ) |
| 35 |
1 2 3 4 5 6 7 8 12
|
lsppratlem6 |
⊢ ( 𝜑 → ( 𝑧 ∈ ( 𝑈 ∖ { ( 0g ‘ 𝑊 ) } ) → 𝑈 = ( 𝑁 ‘ { 𝑧 } ) ) ) |
| 36 |
34 35
|
jcad |
⊢ ( 𝜑 → ( 𝑧 ∈ ( 𝑈 ∖ { ( 0g ‘ 𝑊 ) } ) → ( 𝑧 ∈ 𝑉 ∧ 𝑈 = ( 𝑁 ‘ { 𝑧 } ) ) ) ) |
| 37 |
36
|
eximdv |
⊢ ( 𝜑 → ( ∃ 𝑧 𝑧 ∈ ( 𝑈 ∖ { ( 0g ‘ 𝑊 ) } ) → ∃ 𝑧 ( 𝑧 ∈ 𝑉 ∧ 𝑈 = ( 𝑁 ‘ { 𝑧 } ) ) ) ) |
| 38 |
|
n0 |
⊢ ( ( 𝑈 ∖ { ( 0g ‘ 𝑊 ) } ) ≠ ∅ ↔ ∃ 𝑧 𝑧 ∈ ( 𝑈 ∖ { ( 0g ‘ 𝑊 ) } ) ) |
| 39 |
|
df-rex |
⊢ ( ∃ 𝑧 ∈ 𝑉 𝑈 = ( 𝑁 ‘ { 𝑧 } ) ↔ ∃ 𝑧 ( 𝑧 ∈ 𝑉 ∧ 𝑈 = ( 𝑁 ‘ { 𝑧 } ) ) ) |
| 40 |
37 38 39
|
3imtr4g |
⊢ ( 𝜑 → ( ( 𝑈 ∖ { ( 0g ‘ 𝑊 ) } ) ≠ ∅ → ∃ 𝑧 ∈ 𝑉 𝑈 = ( 𝑁 ‘ { 𝑧 } ) ) ) |
| 41 |
30 40
|
pm2.61dne |
⊢ ( 𝜑 → ∃ 𝑧 ∈ 𝑉 𝑈 = ( 𝑁 ‘ { 𝑧 } ) ) |