| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lspprat.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | lspprat.s | ⊢ 𝑆  =  ( LSubSp ‘ 𝑊 ) | 
						
							| 3 |  | lspprat.n | ⊢ 𝑁  =  ( LSpan ‘ 𝑊 ) | 
						
							| 4 |  | lspprat.w | ⊢ ( 𝜑  →  𝑊  ∈  LVec ) | 
						
							| 5 |  | lspprat.u | ⊢ ( 𝜑  →  𝑈  ∈  𝑆 ) | 
						
							| 6 |  | lspprat.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 7 |  | lspprat.y | ⊢ ( 𝜑  →  𝑌  ∈  𝑉 ) | 
						
							| 8 |  | lspprat.p | ⊢ ( 𝜑  →  𝑈  ⊊  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) ) | 
						
							| 9 |  | lsppratlem6.o | ⊢  0   =  ( 0g ‘ 𝑊 ) | 
						
							| 10 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑈  ∖  {  0  } ) )  →  𝑈  ⊊  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) ) | 
						
							| 11 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝑈  ∖  {  0  } )  ∧  𝑦  ∈  ( 𝑈  ∖  ( 𝑁 ‘ { 𝑥 } ) ) ) )  →  𝑊  ∈  LVec ) | 
						
							| 12 | 5 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝑈  ∖  {  0  } )  ∧  𝑦  ∈  ( 𝑈  ∖  ( 𝑁 ‘ { 𝑥 } ) ) ) )  →  𝑈  ∈  𝑆 ) | 
						
							| 13 | 6 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝑈  ∖  {  0  } )  ∧  𝑦  ∈  ( 𝑈  ∖  ( 𝑁 ‘ { 𝑥 } ) ) ) )  →  𝑋  ∈  𝑉 ) | 
						
							| 14 | 7 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝑈  ∖  {  0  } )  ∧  𝑦  ∈  ( 𝑈  ∖  ( 𝑁 ‘ { 𝑥 } ) ) ) )  →  𝑌  ∈  𝑉 ) | 
						
							| 15 | 8 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝑈  ∖  {  0  } )  ∧  𝑦  ∈  ( 𝑈  ∖  ( 𝑁 ‘ { 𝑥 } ) ) ) )  →  𝑈  ⊊  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) ) | 
						
							| 16 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝑈  ∖  {  0  } )  ∧  𝑦  ∈  ( 𝑈  ∖  ( 𝑁 ‘ { 𝑥 } ) ) ) )  →  𝑥  ∈  ( 𝑈  ∖  {  0  } ) ) | 
						
							| 17 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝑈  ∖  {  0  } )  ∧  𝑦  ∈  ( 𝑈  ∖  ( 𝑁 ‘ { 𝑥 } ) ) ) )  →  𝑦  ∈  ( 𝑈  ∖  ( 𝑁 ‘ { 𝑥 } ) ) ) | 
						
							| 18 | 1 2 3 11 12 13 14 15 9 16 17 | lsppratlem5 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝑈  ∖  {  0  } )  ∧  𝑦  ∈  ( 𝑈  ∖  ( 𝑁 ‘ { 𝑥 } ) ) ) )  →  ( 𝑁 ‘ { 𝑋 ,  𝑌 } )  ⊆  𝑈 ) | 
						
							| 19 |  | ssnpss | ⊢ ( ( 𝑁 ‘ { 𝑋 ,  𝑌 } )  ⊆  𝑈  →  ¬  𝑈  ⊊  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) ) | 
						
							| 20 | 18 19 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝑈  ∖  {  0  } )  ∧  𝑦  ∈  ( 𝑈  ∖  ( 𝑁 ‘ { 𝑥 } ) ) ) )  →  ¬  𝑈  ⊊  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) ) | 
						
							| 21 | 20 | expr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑈  ∖  {  0  } ) )  →  ( 𝑦  ∈  ( 𝑈  ∖  ( 𝑁 ‘ { 𝑥 } ) )  →  ¬  𝑈  ⊊  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) ) ) | 
						
							| 22 | 10 21 | mt2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑈  ∖  {  0  } ) )  →  ¬  𝑦  ∈  ( 𝑈  ∖  ( 𝑁 ‘ { 𝑥 } ) ) ) | 
						
							| 23 | 22 | eq0rdv | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑈  ∖  {  0  } ) )  →  ( 𝑈  ∖  ( 𝑁 ‘ { 𝑥 } ) )  =  ∅ ) | 
						
							| 24 |  | ssdif0 | ⊢ ( 𝑈  ⊆  ( 𝑁 ‘ { 𝑥 } )  ↔  ( 𝑈  ∖  ( 𝑁 ‘ { 𝑥 } ) )  =  ∅ ) | 
						
							| 25 | 23 24 | sylibr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑈  ∖  {  0  } ) )  →  𝑈  ⊆  ( 𝑁 ‘ { 𝑥 } ) ) | 
						
							| 26 |  | lveclmod | ⊢ ( 𝑊  ∈  LVec  →  𝑊  ∈  LMod ) | 
						
							| 27 | 4 26 | syl | ⊢ ( 𝜑  →  𝑊  ∈  LMod ) | 
						
							| 28 | 27 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑈  ∖  {  0  } ) )  →  𝑊  ∈  LMod ) | 
						
							| 29 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑈  ∖  {  0  } ) )  →  𝑈  ∈  𝑆 ) | 
						
							| 30 |  | eldifi | ⊢ ( 𝑥  ∈  ( 𝑈  ∖  {  0  } )  →  𝑥  ∈  𝑈 ) | 
						
							| 31 | 30 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑈  ∖  {  0  } ) )  →  𝑥  ∈  𝑈 ) | 
						
							| 32 | 2 3 28 29 31 | ellspsn5 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑈  ∖  {  0  } ) )  →  ( 𝑁 ‘ { 𝑥 } )  ⊆  𝑈 ) | 
						
							| 33 | 25 32 | eqssd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑈  ∖  {  0  } ) )  →  𝑈  =  ( 𝑁 ‘ { 𝑥 } ) ) | 
						
							| 34 | 33 | ex | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝑈  ∖  {  0  } )  →  𝑈  =  ( 𝑁 ‘ { 𝑥 } ) ) ) |