Step |
Hyp |
Ref |
Expression |
1 |
|
lspprat.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
lspprat.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
3 |
|
lspprat.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
4 |
|
lspprat.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
5 |
|
lspprat.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) |
6 |
|
lspprat.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
7 |
|
lspprat.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
8 |
|
lspprat.p |
⊢ ( 𝜑 → 𝑈 ⊊ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
9 |
|
lsppratlem6.o |
⊢ 0 = ( 0g ‘ 𝑊 ) |
10 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑈 ∖ { 0 } ) ) → 𝑈 ⊊ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
11 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑈 ∖ { 0 } ) ∧ 𝑦 ∈ ( 𝑈 ∖ ( 𝑁 ‘ { 𝑥 } ) ) ) ) → 𝑊 ∈ LVec ) |
12 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑈 ∖ { 0 } ) ∧ 𝑦 ∈ ( 𝑈 ∖ ( 𝑁 ‘ { 𝑥 } ) ) ) ) → 𝑈 ∈ 𝑆 ) |
13 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑈 ∖ { 0 } ) ∧ 𝑦 ∈ ( 𝑈 ∖ ( 𝑁 ‘ { 𝑥 } ) ) ) ) → 𝑋 ∈ 𝑉 ) |
14 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑈 ∖ { 0 } ) ∧ 𝑦 ∈ ( 𝑈 ∖ ( 𝑁 ‘ { 𝑥 } ) ) ) ) → 𝑌 ∈ 𝑉 ) |
15 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑈 ∖ { 0 } ) ∧ 𝑦 ∈ ( 𝑈 ∖ ( 𝑁 ‘ { 𝑥 } ) ) ) ) → 𝑈 ⊊ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
16 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑈 ∖ { 0 } ) ∧ 𝑦 ∈ ( 𝑈 ∖ ( 𝑁 ‘ { 𝑥 } ) ) ) ) → 𝑥 ∈ ( 𝑈 ∖ { 0 } ) ) |
17 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑈 ∖ { 0 } ) ∧ 𝑦 ∈ ( 𝑈 ∖ ( 𝑁 ‘ { 𝑥 } ) ) ) ) → 𝑦 ∈ ( 𝑈 ∖ ( 𝑁 ‘ { 𝑥 } ) ) ) |
18 |
1 2 3 11 12 13 14 15 9 16 17
|
lsppratlem5 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑈 ∖ { 0 } ) ∧ 𝑦 ∈ ( 𝑈 ∖ ( 𝑁 ‘ { 𝑥 } ) ) ) ) → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ⊆ 𝑈 ) |
19 |
|
ssnpss |
⊢ ( ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ⊆ 𝑈 → ¬ 𝑈 ⊊ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
20 |
18 19
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑈 ∖ { 0 } ) ∧ 𝑦 ∈ ( 𝑈 ∖ ( 𝑁 ‘ { 𝑥 } ) ) ) ) → ¬ 𝑈 ⊊ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
21 |
20
|
expr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑈 ∖ { 0 } ) ) → ( 𝑦 ∈ ( 𝑈 ∖ ( 𝑁 ‘ { 𝑥 } ) ) → ¬ 𝑈 ⊊ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ) |
22 |
10 21
|
mt2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑈 ∖ { 0 } ) ) → ¬ 𝑦 ∈ ( 𝑈 ∖ ( 𝑁 ‘ { 𝑥 } ) ) ) |
23 |
22
|
eq0rdv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑈 ∖ { 0 } ) ) → ( 𝑈 ∖ ( 𝑁 ‘ { 𝑥 } ) ) = ∅ ) |
24 |
|
ssdif0 |
⊢ ( 𝑈 ⊆ ( 𝑁 ‘ { 𝑥 } ) ↔ ( 𝑈 ∖ ( 𝑁 ‘ { 𝑥 } ) ) = ∅ ) |
25 |
23 24
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑈 ∖ { 0 } ) ) → 𝑈 ⊆ ( 𝑁 ‘ { 𝑥 } ) ) |
26 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
27 |
4 26
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
28 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑈 ∖ { 0 } ) ) → 𝑊 ∈ LMod ) |
29 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑈 ∖ { 0 } ) ) → 𝑈 ∈ 𝑆 ) |
30 |
|
eldifi |
⊢ ( 𝑥 ∈ ( 𝑈 ∖ { 0 } ) → 𝑥 ∈ 𝑈 ) |
31 |
30
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑈 ∖ { 0 } ) ) → 𝑥 ∈ 𝑈 ) |
32 |
2 3 28 29 31
|
lspsnel5a |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑈 ∖ { 0 } ) ) → ( 𝑁 ‘ { 𝑥 } ) ⊆ 𝑈 ) |
33 |
25 32
|
eqssd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑈 ∖ { 0 } ) ) → 𝑈 = ( 𝑁 ‘ { 𝑥 } ) ) |
34 |
33
|
ex |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑈 ∖ { 0 } ) → 𝑈 = ( 𝑁 ‘ { 𝑥 } ) ) ) |