Step |
Hyp |
Ref |
Expression |
1 |
|
lspprat.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
lspprat.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
3 |
|
lspprat.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
4 |
|
lspprat.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
5 |
|
lspprat.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) |
6 |
|
lspprat.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
7 |
|
lspprat.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
8 |
|
lspprat.p |
⊢ ( 𝜑 → 𝑈 ⊊ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
9 |
|
lsppratlem1.o |
⊢ 0 = ( 0g ‘ 𝑊 ) |
10 |
|
lsppratlem1.x2 |
⊢ ( 𝜑 → 𝑥 ∈ ( 𝑈 ∖ { 0 } ) ) |
11 |
|
lsppratlem1.y2 |
⊢ ( 𝜑 → 𝑦 ∈ ( 𝑈 ∖ ( 𝑁 ‘ { 𝑥 } ) ) ) |
12 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑁 ‘ { 𝑌 } ) ) → 𝑊 ∈ LVec ) |
13 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑁 ‘ { 𝑌 } ) ) → 𝑈 ∈ 𝑆 ) |
14 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑁 ‘ { 𝑌 } ) ) → 𝑋 ∈ 𝑉 ) |
15 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑁 ‘ { 𝑌 } ) ) → 𝑌 ∈ 𝑉 ) |
16 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑁 ‘ { 𝑌 } ) ) → 𝑈 ⊊ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
17 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑁 ‘ { 𝑌 } ) ) → 𝑥 ∈ ( 𝑈 ∖ { 0 } ) ) |
18 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑁 ‘ { 𝑌 } ) ) → 𝑦 ∈ ( 𝑈 ∖ ( 𝑁 ‘ { 𝑥 } ) ) ) |
19 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑁 ‘ { 𝑌 } ) ) → 𝑥 ∈ ( 𝑁 ‘ { 𝑌 } ) ) |
20 |
1 2 3 12 13 14 15 16 9 17 18 19
|
lsppratlem3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑁 ‘ { 𝑌 } ) ) → ( 𝑋 ∈ ( 𝑁 ‘ { 𝑥 , 𝑦 } ) ∧ 𝑌 ∈ ( 𝑁 ‘ { 𝑥 , 𝑦 } ) ) ) |
21 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑁 ‘ { 𝑥 , 𝑌 } ) ) → 𝑊 ∈ LVec ) |
22 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑁 ‘ { 𝑥 , 𝑌 } ) ) → 𝑈 ∈ 𝑆 ) |
23 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑁 ‘ { 𝑥 , 𝑌 } ) ) → 𝑋 ∈ 𝑉 ) |
24 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑁 ‘ { 𝑥 , 𝑌 } ) ) → 𝑌 ∈ 𝑉 ) |
25 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑁 ‘ { 𝑥 , 𝑌 } ) ) → 𝑈 ⊊ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
26 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑁 ‘ { 𝑥 , 𝑌 } ) ) → 𝑥 ∈ ( 𝑈 ∖ { 0 } ) ) |
27 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑁 ‘ { 𝑥 , 𝑌 } ) ) → 𝑦 ∈ ( 𝑈 ∖ ( 𝑁 ‘ { 𝑥 } ) ) ) |
28 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑁 ‘ { 𝑥 , 𝑌 } ) ) → 𝑋 ∈ ( 𝑁 ‘ { 𝑥 , 𝑌 } ) ) |
29 |
1 2 3 21 22 23 24 25 9 26 27 28
|
lsppratlem4 |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑁 ‘ { 𝑥 , 𝑌 } ) ) → ( 𝑋 ∈ ( 𝑁 ‘ { 𝑥 , 𝑦 } ) ∧ 𝑌 ∈ ( 𝑁 ‘ { 𝑥 , 𝑦 } ) ) ) |
30 |
1 2 3 4 5 6 7 8 9 10 11
|
lsppratlem1 |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑁 ‘ { 𝑌 } ) ∨ 𝑋 ∈ ( 𝑁 ‘ { 𝑥 , 𝑌 } ) ) ) |
31 |
20 29 30
|
mpjaodan |
⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝑁 ‘ { 𝑥 , 𝑦 } ) ∧ 𝑌 ∈ ( 𝑁 ‘ { 𝑥 , 𝑦 } ) ) ) |
32 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝑁 ‘ { 𝑥 , 𝑦 } ) ∧ 𝑌 ∈ ( 𝑁 ‘ { 𝑥 , 𝑦 } ) ) ) → 𝑊 ∈ LVec ) |
33 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝑁 ‘ { 𝑥 , 𝑦 } ) ∧ 𝑌 ∈ ( 𝑁 ‘ { 𝑥 , 𝑦 } ) ) ) → 𝑈 ∈ 𝑆 ) |
34 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝑁 ‘ { 𝑥 , 𝑦 } ) ∧ 𝑌 ∈ ( 𝑁 ‘ { 𝑥 , 𝑦 } ) ) ) → 𝑋 ∈ 𝑉 ) |
35 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝑁 ‘ { 𝑥 , 𝑦 } ) ∧ 𝑌 ∈ ( 𝑁 ‘ { 𝑥 , 𝑦 } ) ) ) → 𝑌 ∈ 𝑉 ) |
36 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝑁 ‘ { 𝑥 , 𝑦 } ) ∧ 𝑌 ∈ ( 𝑁 ‘ { 𝑥 , 𝑦 } ) ) ) → 𝑈 ⊊ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
37 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝑁 ‘ { 𝑥 , 𝑦 } ) ∧ 𝑌 ∈ ( 𝑁 ‘ { 𝑥 , 𝑦 } ) ) ) → 𝑥 ∈ ( 𝑈 ∖ { 0 } ) ) |
38 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝑁 ‘ { 𝑥 , 𝑦 } ) ∧ 𝑌 ∈ ( 𝑁 ‘ { 𝑥 , 𝑦 } ) ) ) → 𝑦 ∈ ( 𝑈 ∖ ( 𝑁 ‘ { 𝑥 } ) ) ) |
39 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝑁 ‘ { 𝑥 , 𝑦 } ) ∧ 𝑌 ∈ ( 𝑁 ‘ { 𝑥 , 𝑦 } ) ) ) → 𝑋 ∈ ( 𝑁 ‘ { 𝑥 , 𝑦 } ) ) |
40 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝑁 ‘ { 𝑥 , 𝑦 } ) ∧ 𝑌 ∈ ( 𝑁 ‘ { 𝑥 , 𝑦 } ) ) ) → 𝑌 ∈ ( 𝑁 ‘ { 𝑥 , 𝑦 } ) ) |
41 |
1 2 3 32 33 34 35 36 9 37 38 39 40
|
lsppratlem2 |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝑁 ‘ { 𝑥 , 𝑦 } ) ∧ 𝑌 ∈ ( 𝑁 ‘ { 𝑥 , 𝑦 } ) ) ) → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ⊆ 𝑈 ) |
42 |
31 41
|
mpdan |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ⊆ 𝑈 ) |