| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lspprat.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | lspprat.s | ⊢ 𝑆  =  ( LSubSp ‘ 𝑊 ) | 
						
							| 3 |  | lspprat.n | ⊢ 𝑁  =  ( LSpan ‘ 𝑊 ) | 
						
							| 4 |  | lspprat.w | ⊢ ( 𝜑  →  𝑊  ∈  LVec ) | 
						
							| 5 |  | lspprat.u | ⊢ ( 𝜑  →  𝑈  ∈  𝑆 ) | 
						
							| 6 |  | lspprat.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 7 |  | lspprat.y | ⊢ ( 𝜑  →  𝑌  ∈  𝑉 ) | 
						
							| 8 |  | lspprat.p | ⊢ ( 𝜑  →  𝑈  ⊊  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) ) | 
						
							| 9 |  | lsppratlem1.o | ⊢  0   =  ( 0g ‘ 𝑊 ) | 
						
							| 10 |  | lsppratlem1.x2 | ⊢ ( 𝜑  →  𝑥  ∈  ( 𝑈  ∖  {  0  } ) ) | 
						
							| 11 |  | lsppratlem1.y2 | ⊢ ( 𝜑  →  𝑦  ∈  ( 𝑈  ∖  ( 𝑁 ‘ { 𝑥 } ) ) ) | 
						
							| 12 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑁 ‘ { 𝑌 } ) )  →  𝑊  ∈  LVec ) | 
						
							| 13 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑁 ‘ { 𝑌 } ) )  →  𝑈  ∈  𝑆 ) | 
						
							| 14 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑁 ‘ { 𝑌 } ) )  →  𝑋  ∈  𝑉 ) | 
						
							| 15 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑁 ‘ { 𝑌 } ) )  →  𝑌  ∈  𝑉 ) | 
						
							| 16 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑁 ‘ { 𝑌 } ) )  →  𝑈  ⊊  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) ) | 
						
							| 17 | 10 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑁 ‘ { 𝑌 } ) )  →  𝑥  ∈  ( 𝑈  ∖  {  0  } ) ) | 
						
							| 18 | 11 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑁 ‘ { 𝑌 } ) )  →  𝑦  ∈  ( 𝑈  ∖  ( 𝑁 ‘ { 𝑥 } ) ) ) | 
						
							| 19 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑁 ‘ { 𝑌 } ) )  →  𝑥  ∈  ( 𝑁 ‘ { 𝑌 } ) ) | 
						
							| 20 | 1 2 3 12 13 14 15 16 9 17 18 19 | lsppratlem3 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑁 ‘ { 𝑌 } ) )  →  ( 𝑋  ∈  ( 𝑁 ‘ { 𝑥 ,  𝑦 } )  ∧  𝑌  ∈  ( 𝑁 ‘ { 𝑥 ,  𝑦 } ) ) ) | 
						
							| 21 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 𝑁 ‘ { 𝑥 ,  𝑌 } ) )  →  𝑊  ∈  LVec ) | 
						
							| 22 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 𝑁 ‘ { 𝑥 ,  𝑌 } ) )  →  𝑈  ∈  𝑆 ) | 
						
							| 23 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 𝑁 ‘ { 𝑥 ,  𝑌 } ) )  →  𝑋  ∈  𝑉 ) | 
						
							| 24 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 𝑁 ‘ { 𝑥 ,  𝑌 } ) )  →  𝑌  ∈  𝑉 ) | 
						
							| 25 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 𝑁 ‘ { 𝑥 ,  𝑌 } ) )  →  𝑈  ⊊  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) ) | 
						
							| 26 | 10 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 𝑁 ‘ { 𝑥 ,  𝑌 } ) )  →  𝑥  ∈  ( 𝑈  ∖  {  0  } ) ) | 
						
							| 27 | 11 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 𝑁 ‘ { 𝑥 ,  𝑌 } ) )  →  𝑦  ∈  ( 𝑈  ∖  ( 𝑁 ‘ { 𝑥 } ) ) ) | 
						
							| 28 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 𝑁 ‘ { 𝑥 ,  𝑌 } ) )  →  𝑋  ∈  ( 𝑁 ‘ { 𝑥 ,  𝑌 } ) ) | 
						
							| 29 | 1 2 3 21 22 23 24 25 9 26 27 28 | lsppratlem4 | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 𝑁 ‘ { 𝑥 ,  𝑌 } ) )  →  ( 𝑋  ∈  ( 𝑁 ‘ { 𝑥 ,  𝑦 } )  ∧  𝑌  ∈  ( 𝑁 ‘ { 𝑥 ,  𝑦 } ) ) ) | 
						
							| 30 | 1 2 3 4 5 6 7 8 9 10 11 | lsppratlem1 | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝑁 ‘ { 𝑌 } )  ∨  𝑋  ∈  ( 𝑁 ‘ { 𝑥 ,  𝑌 } ) ) ) | 
						
							| 31 | 20 29 30 | mpjaodan | ⊢ ( 𝜑  →  ( 𝑋  ∈  ( 𝑁 ‘ { 𝑥 ,  𝑦 } )  ∧  𝑌  ∈  ( 𝑁 ‘ { 𝑥 ,  𝑦 } ) ) ) | 
						
							| 32 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  ( 𝑁 ‘ { 𝑥 ,  𝑦 } )  ∧  𝑌  ∈  ( 𝑁 ‘ { 𝑥 ,  𝑦 } ) ) )  →  𝑊  ∈  LVec ) | 
						
							| 33 | 5 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  ( 𝑁 ‘ { 𝑥 ,  𝑦 } )  ∧  𝑌  ∈  ( 𝑁 ‘ { 𝑥 ,  𝑦 } ) ) )  →  𝑈  ∈  𝑆 ) | 
						
							| 34 | 6 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  ( 𝑁 ‘ { 𝑥 ,  𝑦 } )  ∧  𝑌  ∈  ( 𝑁 ‘ { 𝑥 ,  𝑦 } ) ) )  →  𝑋  ∈  𝑉 ) | 
						
							| 35 | 7 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  ( 𝑁 ‘ { 𝑥 ,  𝑦 } )  ∧  𝑌  ∈  ( 𝑁 ‘ { 𝑥 ,  𝑦 } ) ) )  →  𝑌  ∈  𝑉 ) | 
						
							| 36 | 8 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  ( 𝑁 ‘ { 𝑥 ,  𝑦 } )  ∧  𝑌  ∈  ( 𝑁 ‘ { 𝑥 ,  𝑦 } ) ) )  →  𝑈  ⊊  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) ) | 
						
							| 37 | 10 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  ( 𝑁 ‘ { 𝑥 ,  𝑦 } )  ∧  𝑌  ∈  ( 𝑁 ‘ { 𝑥 ,  𝑦 } ) ) )  →  𝑥  ∈  ( 𝑈  ∖  {  0  } ) ) | 
						
							| 38 | 11 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  ( 𝑁 ‘ { 𝑥 ,  𝑦 } )  ∧  𝑌  ∈  ( 𝑁 ‘ { 𝑥 ,  𝑦 } ) ) )  →  𝑦  ∈  ( 𝑈  ∖  ( 𝑁 ‘ { 𝑥 } ) ) ) | 
						
							| 39 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  ( 𝑁 ‘ { 𝑥 ,  𝑦 } )  ∧  𝑌  ∈  ( 𝑁 ‘ { 𝑥 ,  𝑦 } ) ) )  →  𝑋  ∈  ( 𝑁 ‘ { 𝑥 ,  𝑦 } ) ) | 
						
							| 40 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  ( 𝑁 ‘ { 𝑥 ,  𝑦 } )  ∧  𝑌  ∈  ( 𝑁 ‘ { 𝑥 ,  𝑦 } ) ) )  →  𝑌  ∈  ( 𝑁 ‘ { 𝑥 ,  𝑦 } ) ) | 
						
							| 41 | 1 2 3 32 33 34 35 36 9 37 38 39 40 | lsppratlem2 | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  ( 𝑁 ‘ { 𝑥 ,  𝑦 } )  ∧  𝑌  ∈  ( 𝑁 ‘ { 𝑥 ,  𝑦 } ) ) )  →  ( 𝑁 ‘ { 𝑋 ,  𝑌 } )  ⊆  𝑈 ) | 
						
							| 42 | 31 41 | mpdan | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑋 ,  𝑌 } )  ⊆  𝑈 ) |