| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lspprat.v |  |-  V = ( Base ` W ) | 
						
							| 2 |  | lspprat.s |  |-  S = ( LSubSp ` W ) | 
						
							| 3 |  | lspprat.n |  |-  N = ( LSpan ` W ) | 
						
							| 4 |  | lspprat.w |  |-  ( ph -> W e. LVec ) | 
						
							| 5 |  | lspprat.u |  |-  ( ph -> U e. S ) | 
						
							| 6 |  | lspprat.x |  |-  ( ph -> X e. V ) | 
						
							| 7 |  | lspprat.y |  |-  ( ph -> Y e. V ) | 
						
							| 8 |  | lspprat.p |  |-  ( ph -> U C. ( N ` { X , Y } ) ) | 
						
							| 9 |  | lsppratlem6.o |  |-  .0. = ( 0g ` W ) | 
						
							| 10 | 8 | adantr |  |-  ( ( ph /\ x e. ( U \ { .0. } ) ) -> U C. ( N ` { X , Y } ) ) | 
						
							| 11 | 4 | adantr |  |-  ( ( ph /\ ( x e. ( U \ { .0. } ) /\ y e. ( U \ ( N ` { x } ) ) ) ) -> W e. LVec ) | 
						
							| 12 | 5 | adantr |  |-  ( ( ph /\ ( x e. ( U \ { .0. } ) /\ y e. ( U \ ( N ` { x } ) ) ) ) -> U e. S ) | 
						
							| 13 | 6 | adantr |  |-  ( ( ph /\ ( x e. ( U \ { .0. } ) /\ y e. ( U \ ( N ` { x } ) ) ) ) -> X e. V ) | 
						
							| 14 | 7 | adantr |  |-  ( ( ph /\ ( x e. ( U \ { .0. } ) /\ y e. ( U \ ( N ` { x } ) ) ) ) -> Y e. V ) | 
						
							| 15 | 8 | adantr |  |-  ( ( ph /\ ( x e. ( U \ { .0. } ) /\ y e. ( U \ ( N ` { x } ) ) ) ) -> U C. ( N ` { X , Y } ) ) | 
						
							| 16 |  | simprl |  |-  ( ( ph /\ ( x e. ( U \ { .0. } ) /\ y e. ( U \ ( N ` { x } ) ) ) ) -> x e. ( U \ { .0. } ) ) | 
						
							| 17 |  | simprr |  |-  ( ( ph /\ ( x e. ( U \ { .0. } ) /\ y e. ( U \ ( N ` { x } ) ) ) ) -> y e. ( U \ ( N ` { x } ) ) ) | 
						
							| 18 | 1 2 3 11 12 13 14 15 9 16 17 | lsppratlem5 |  |-  ( ( ph /\ ( x e. ( U \ { .0. } ) /\ y e. ( U \ ( N ` { x } ) ) ) ) -> ( N ` { X , Y } ) C_ U ) | 
						
							| 19 |  | ssnpss |  |-  ( ( N ` { X , Y } ) C_ U -> -. U C. ( N ` { X , Y } ) ) | 
						
							| 20 | 18 19 | syl |  |-  ( ( ph /\ ( x e. ( U \ { .0. } ) /\ y e. ( U \ ( N ` { x } ) ) ) ) -> -. U C. ( N ` { X , Y } ) ) | 
						
							| 21 | 20 | expr |  |-  ( ( ph /\ x e. ( U \ { .0. } ) ) -> ( y e. ( U \ ( N ` { x } ) ) -> -. U C. ( N ` { X , Y } ) ) ) | 
						
							| 22 | 10 21 | mt2d |  |-  ( ( ph /\ x e. ( U \ { .0. } ) ) -> -. y e. ( U \ ( N ` { x } ) ) ) | 
						
							| 23 | 22 | eq0rdv |  |-  ( ( ph /\ x e. ( U \ { .0. } ) ) -> ( U \ ( N ` { x } ) ) = (/) ) | 
						
							| 24 |  | ssdif0 |  |-  ( U C_ ( N ` { x } ) <-> ( U \ ( N ` { x } ) ) = (/) ) | 
						
							| 25 | 23 24 | sylibr |  |-  ( ( ph /\ x e. ( U \ { .0. } ) ) -> U C_ ( N ` { x } ) ) | 
						
							| 26 |  | lveclmod |  |-  ( W e. LVec -> W e. LMod ) | 
						
							| 27 | 4 26 | syl |  |-  ( ph -> W e. LMod ) | 
						
							| 28 | 27 | adantr |  |-  ( ( ph /\ x e. ( U \ { .0. } ) ) -> W e. LMod ) | 
						
							| 29 | 5 | adantr |  |-  ( ( ph /\ x e. ( U \ { .0. } ) ) -> U e. S ) | 
						
							| 30 |  | eldifi |  |-  ( x e. ( U \ { .0. } ) -> x e. U ) | 
						
							| 31 | 30 | adantl |  |-  ( ( ph /\ x e. ( U \ { .0. } ) ) -> x e. U ) | 
						
							| 32 | 2 3 28 29 31 | ellspsn5 |  |-  ( ( ph /\ x e. ( U \ { .0. } ) ) -> ( N ` { x } ) C_ U ) | 
						
							| 33 | 25 32 | eqssd |  |-  ( ( ph /\ x e. ( U \ { .0. } ) ) -> U = ( N ` { x } ) ) | 
						
							| 34 | 33 | ex |  |-  ( ph -> ( x e. ( U \ { .0. } ) -> U = ( N ` { x } ) ) ) |