Description: Lemma for lspprat . Negating the assumption on y , we arrive close to the desired conclusion. (Contributed by NM, 29-Aug-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lspprat.v | |
|
lspprat.s | |
||
lspprat.n | |
||
lspprat.w | |
||
lspprat.u | |
||
lspprat.x | |
||
lspprat.y | |
||
lspprat.p | |
||
lsppratlem6.o | |
||
Assertion | lsppratlem6 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspprat.v | |
|
2 | lspprat.s | |
|
3 | lspprat.n | |
|
4 | lspprat.w | |
|
5 | lspprat.u | |
|
6 | lspprat.x | |
|
7 | lspprat.y | |
|
8 | lspprat.p | |
|
9 | lsppratlem6.o | |
|
10 | 8 | adantr | |
11 | 4 | adantr | |
12 | 5 | adantr | |
13 | 6 | adantr | |
14 | 7 | adantr | |
15 | 8 | adantr | |
16 | simprl | |
|
17 | simprr | |
|
18 | 1 2 3 11 12 13 14 15 9 16 17 | lsppratlem5 | |
19 | ssnpss | |
|
20 | 18 19 | syl | |
21 | 20 | expr | |
22 | 10 21 | mt2d | |
23 | 22 | eq0rdv | |
24 | ssdif0 | |
|
25 | 23 24 | sylibr | |
26 | lveclmod | |
|
27 | 4 26 | syl | |
28 | 27 | adantr | |
29 | 5 | adantr | |
30 | eldifi | |
|
31 | 30 | adantl | |
32 | 2 3 28 29 31 | lspsnel5a | |
33 | 25 32 | eqssd | |
34 | 33 | ex | |