| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lspprat.v |
|- V = ( Base ` W ) |
| 2 |
|
lspprat.s |
|- S = ( LSubSp ` W ) |
| 3 |
|
lspprat.n |
|- N = ( LSpan ` W ) |
| 4 |
|
lspprat.w |
|- ( ph -> W e. LVec ) |
| 5 |
|
lspprat.u |
|- ( ph -> U e. S ) |
| 6 |
|
lspprat.x |
|- ( ph -> X e. V ) |
| 7 |
|
lspprat.y |
|- ( ph -> Y e. V ) |
| 8 |
|
lspprat.p |
|- ( ph -> U C. ( N ` { X , Y } ) ) |
| 9 |
|
ssdif0 |
|- ( U C_ { ( 0g ` W ) } <-> ( U \ { ( 0g ` W ) } ) = (/) ) |
| 10 |
|
lveclmod |
|- ( W e. LVec -> W e. LMod ) |
| 11 |
4 10
|
syl |
|- ( ph -> W e. LMod ) |
| 12 |
|
eqid |
|- ( 0g ` W ) = ( 0g ` W ) |
| 13 |
1 12
|
lmod0vcl |
|- ( W e. LMod -> ( 0g ` W ) e. V ) |
| 14 |
11 13
|
syl |
|- ( ph -> ( 0g ` W ) e. V ) |
| 15 |
14
|
adantr |
|- ( ( ph /\ U C_ { ( 0g ` W ) } ) -> ( 0g ` W ) e. V ) |
| 16 |
|
simpr |
|- ( ( ph /\ U C_ { ( 0g ` W ) } ) -> U C_ { ( 0g ` W ) } ) |
| 17 |
12 2
|
lss0ss |
|- ( ( W e. LMod /\ U e. S ) -> { ( 0g ` W ) } C_ U ) |
| 18 |
11 5 17
|
syl2anc |
|- ( ph -> { ( 0g ` W ) } C_ U ) |
| 19 |
18
|
adantr |
|- ( ( ph /\ U C_ { ( 0g ` W ) } ) -> { ( 0g ` W ) } C_ U ) |
| 20 |
16 19
|
eqssd |
|- ( ( ph /\ U C_ { ( 0g ` W ) } ) -> U = { ( 0g ` W ) } ) |
| 21 |
12 3
|
lspsn0 |
|- ( W e. LMod -> ( N ` { ( 0g ` W ) } ) = { ( 0g ` W ) } ) |
| 22 |
11 21
|
syl |
|- ( ph -> ( N ` { ( 0g ` W ) } ) = { ( 0g ` W ) } ) |
| 23 |
22
|
adantr |
|- ( ( ph /\ U C_ { ( 0g ` W ) } ) -> ( N ` { ( 0g ` W ) } ) = { ( 0g ` W ) } ) |
| 24 |
20 23
|
eqtr4d |
|- ( ( ph /\ U C_ { ( 0g ` W ) } ) -> U = ( N ` { ( 0g ` W ) } ) ) |
| 25 |
|
sneq |
|- ( z = ( 0g ` W ) -> { z } = { ( 0g ` W ) } ) |
| 26 |
25
|
fveq2d |
|- ( z = ( 0g ` W ) -> ( N ` { z } ) = ( N ` { ( 0g ` W ) } ) ) |
| 27 |
26
|
rspceeqv |
|- ( ( ( 0g ` W ) e. V /\ U = ( N ` { ( 0g ` W ) } ) ) -> E. z e. V U = ( N ` { z } ) ) |
| 28 |
15 24 27
|
syl2anc |
|- ( ( ph /\ U C_ { ( 0g ` W ) } ) -> E. z e. V U = ( N ` { z } ) ) |
| 29 |
28
|
ex |
|- ( ph -> ( U C_ { ( 0g ` W ) } -> E. z e. V U = ( N ` { z } ) ) ) |
| 30 |
9 29
|
biimtrrid |
|- ( ph -> ( ( U \ { ( 0g ` W ) } ) = (/) -> E. z e. V U = ( N ` { z } ) ) ) |
| 31 |
1 2
|
lssss |
|- ( U e. S -> U C_ V ) |
| 32 |
5 31
|
syl |
|- ( ph -> U C_ V ) |
| 33 |
32
|
ssdifssd |
|- ( ph -> ( U \ { ( 0g ` W ) } ) C_ V ) |
| 34 |
33
|
sseld |
|- ( ph -> ( z e. ( U \ { ( 0g ` W ) } ) -> z e. V ) ) |
| 35 |
1 2 3 4 5 6 7 8 12
|
lsppratlem6 |
|- ( ph -> ( z e. ( U \ { ( 0g ` W ) } ) -> U = ( N ` { z } ) ) ) |
| 36 |
34 35
|
jcad |
|- ( ph -> ( z e. ( U \ { ( 0g ` W ) } ) -> ( z e. V /\ U = ( N ` { z } ) ) ) ) |
| 37 |
36
|
eximdv |
|- ( ph -> ( E. z z e. ( U \ { ( 0g ` W ) } ) -> E. z ( z e. V /\ U = ( N ` { z } ) ) ) ) |
| 38 |
|
n0 |
|- ( ( U \ { ( 0g ` W ) } ) =/= (/) <-> E. z z e. ( U \ { ( 0g ` W ) } ) ) |
| 39 |
|
df-rex |
|- ( E. z e. V U = ( N ` { z } ) <-> E. z ( z e. V /\ U = ( N ` { z } ) ) ) |
| 40 |
37 38 39
|
3imtr4g |
|- ( ph -> ( ( U \ { ( 0g ` W ) } ) =/= (/) -> E. z e. V U = ( N ` { z } ) ) ) |
| 41 |
30 40
|
pm2.61dne |
|- ( ph -> E. z e. V U = ( N ` { z } ) ) |