Step |
Hyp |
Ref |
Expression |
1 |
|
lspprat.v |
|
2 |
|
lspprat.s |
|
3 |
|
lspprat.n |
|
4 |
|
lspprat.w |
|
5 |
|
lspprat.u |
|
6 |
|
lspprat.x |
|
7 |
|
lspprat.y |
|
8 |
|
lspprat.p |
|
9 |
|
lsppratlem1.o |
|
10 |
|
lsppratlem1.x2 |
|
11 |
|
lsppratlem1.y2 |
|
12 |
|
lsppratlem3.x3 |
|
13 |
|
lveclmod |
|
14 |
4 13
|
syl |
|
15 |
7
|
snssd |
|
16 |
1 3
|
lspssv |
|
17 |
14 15 16
|
syl2anc |
|
18 |
17 12
|
sseldd |
|
19 |
18
|
snssd |
|
20 |
8
|
pssssd |
|
21 |
6
|
snssd |
|
22 |
19 21
|
unssd |
|
23 |
1 2 3
|
lspcl |
|
24 |
14 22 23
|
syl2anc |
|
25 |
|
df-pr |
|
26 |
1 3
|
lspssid |
|
27 |
14 22 26
|
syl2anc |
|
28 |
27
|
unssbd |
|
29 |
|
ssun1 |
|
30 |
29
|
a1i |
|
31 |
1 3
|
lspss |
|
32 |
14 22 30 31
|
syl3anc |
|
33 |
|
0ss |
|
34 |
33
|
a1i |
|
35 |
|
uncom |
|
36 |
|
un0 |
|
37 |
35 36
|
eqtri |
|
38 |
37
|
fveq2i |
|
39 |
12 38
|
eleqtrrdi |
|
40 |
10
|
eldifbd |
|
41 |
9 3
|
lsp0 |
|
42 |
14 41
|
syl |
|
43 |
40 42
|
neleqtrrd |
|
44 |
39 43
|
eldifd |
|
45 |
1 2 3
|
lspsolv |
|
46 |
4 34 7 44 45
|
syl13anc |
|
47 |
|
uncom |
|
48 |
|
un0 |
|
49 |
47 48
|
eqtri |
|
50 |
49
|
fveq2i |
|
51 |
46 50
|
eleqtrdi |
|
52 |
32 51
|
sseldd |
|
53 |
52
|
snssd |
|
54 |
28 53
|
unssd |
|
55 |
25 54
|
eqsstrid |
|
56 |
2 3
|
lspssp |
|
57 |
14 24 55 56
|
syl3anc |
|
58 |
20 57
|
sstrd |
|
59 |
58
|
ssdifd |
|
60 |
59 11
|
sseldd |
|
61 |
1 2 3
|
lspsolv |
|
62 |
4 19 6 60 61
|
syl13anc |
|
63 |
|
df-pr |
|
64 |
63
|
fveq2i |
|
65 |
62 64
|
eleqtrrdi |
|
66 |
1 2
|
lssss |
|
67 |
5 66
|
syl |
|
68 |
67
|
ssdifssd |
|
69 |
68 11
|
sseldd |
|
70 |
18 69
|
prssd |
|
71 |
|
snsspr1 |
|
72 |
71
|
a1i |
|
73 |
1 3
|
lspss |
|
74 |
14 70 72 73
|
syl3anc |
|
75 |
74 51
|
sseldd |
|
76 |
65 75
|
jca |
|