| Step | Hyp | Ref | Expression | 
						
							| 1 |  | madjusmdet.b |  |-  B = ( Base ` A ) | 
						
							| 2 |  | madjusmdet.a |  |-  A = ( ( 1 ... N ) Mat R ) | 
						
							| 3 |  | madjusmdet.d |  |-  D = ( ( 1 ... N ) maDet R ) | 
						
							| 4 |  | madjusmdet.k |  |-  K = ( ( 1 ... N ) maAdju R ) | 
						
							| 5 |  | madjusmdet.t |  |-  .x. = ( .r ` R ) | 
						
							| 6 |  | madjusmdet.z |  |-  Z = ( ZRHom ` R ) | 
						
							| 7 |  | madjusmdet.e |  |-  E = ( ( 1 ... ( N - 1 ) ) maDet R ) | 
						
							| 8 |  | madjusmdet.n |  |-  ( ph -> N e. NN ) | 
						
							| 9 |  | madjusmdet.r |  |-  ( ph -> R e. CRing ) | 
						
							| 10 |  | madjusmdet.i |  |-  ( ph -> I e. ( 1 ... N ) ) | 
						
							| 11 |  | madjusmdet.j |  |-  ( ph -> J e. ( 1 ... N ) ) | 
						
							| 12 |  | madjusmdet.m |  |-  ( ph -> M e. B ) | 
						
							| 13 |  | eqeq1 |  |-  ( k = i -> ( k = 1 <-> i = 1 ) ) | 
						
							| 14 |  | breq1 |  |-  ( k = i -> ( k <_ I <-> i <_ I ) ) | 
						
							| 15 |  | oveq1 |  |-  ( k = i -> ( k - 1 ) = ( i - 1 ) ) | 
						
							| 16 |  | id |  |-  ( k = i -> k = i ) | 
						
							| 17 | 14 15 16 | ifbieq12d |  |-  ( k = i -> if ( k <_ I , ( k - 1 ) , k ) = if ( i <_ I , ( i - 1 ) , i ) ) | 
						
							| 18 | 13 17 | ifbieq2d |  |-  ( k = i -> if ( k = 1 , I , if ( k <_ I , ( k - 1 ) , k ) ) = if ( i = 1 , I , if ( i <_ I , ( i - 1 ) , i ) ) ) | 
						
							| 19 | 18 | cbvmptv |  |-  ( k e. ( 1 ... N ) |-> if ( k = 1 , I , if ( k <_ I , ( k - 1 ) , k ) ) ) = ( i e. ( 1 ... N ) |-> if ( i = 1 , I , if ( i <_ I , ( i - 1 ) , i ) ) ) | 
						
							| 20 |  | breq1 |  |-  ( k = i -> ( k <_ N <-> i <_ N ) ) | 
						
							| 21 | 20 15 16 | ifbieq12d |  |-  ( k = i -> if ( k <_ N , ( k - 1 ) , k ) = if ( i <_ N , ( i - 1 ) , i ) ) | 
						
							| 22 | 13 21 | ifbieq2d |  |-  ( k = i -> if ( k = 1 , N , if ( k <_ N , ( k - 1 ) , k ) ) = if ( i = 1 , N , if ( i <_ N , ( i - 1 ) , i ) ) ) | 
						
							| 23 | 22 | cbvmptv |  |-  ( k e. ( 1 ... N ) |-> if ( k = 1 , N , if ( k <_ N , ( k - 1 ) , k ) ) ) = ( i e. ( 1 ... N ) |-> if ( i = 1 , N , if ( i <_ N , ( i - 1 ) , i ) ) ) | 
						
							| 24 |  | eqeq1 |  |-  ( l = j -> ( l = 1 <-> j = 1 ) ) | 
						
							| 25 |  | breq1 |  |-  ( l = j -> ( l <_ J <-> j <_ J ) ) | 
						
							| 26 |  | oveq1 |  |-  ( l = j -> ( l - 1 ) = ( j - 1 ) ) | 
						
							| 27 |  | id |  |-  ( l = j -> l = j ) | 
						
							| 28 | 25 26 27 | ifbieq12d |  |-  ( l = j -> if ( l <_ J , ( l - 1 ) , l ) = if ( j <_ J , ( j - 1 ) , j ) ) | 
						
							| 29 | 24 28 | ifbieq2d |  |-  ( l = j -> if ( l = 1 , J , if ( l <_ J , ( l - 1 ) , l ) ) = if ( j = 1 , J , if ( j <_ J , ( j - 1 ) , j ) ) ) | 
						
							| 30 | 29 | cbvmptv |  |-  ( l e. ( 1 ... N ) |-> if ( l = 1 , J , if ( l <_ J , ( l - 1 ) , l ) ) ) = ( j e. ( 1 ... N ) |-> if ( j = 1 , J , if ( j <_ J , ( j - 1 ) , j ) ) ) | 
						
							| 31 |  | breq1 |  |-  ( l = j -> ( l <_ N <-> j <_ N ) ) | 
						
							| 32 | 31 26 27 | ifbieq12d |  |-  ( l = j -> if ( l <_ N , ( l - 1 ) , l ) = if ( j <_ N , ( j - 1 ) , j ) ) | 
						
							| 33 | 24 32 | ifbieq2d |  |-  ( l = j -> if ( l = 1 , N , if ( l <_ N , ( l - 1 ) , l ) ) = if ( j = 1 , N , if ( j <_ N , ( j - 1 ) , j ) ) ) | 
						
							| 34 | 33 | cbvmptv |  |-  ( l e. ( 1 ... N ) |-> if ( l = 1 , N , if ( l <_ N , ( l - 1 ) , l ) ) ) = ( j e. ( 1 ... N ) |-> if ( j = 1 , N , if ( j <_ N , ( j - 1 ) , j ) ) ) | 
						
							| 35 | 1 2 3 4 5 6 7 8 9 10 11 12 19 23 30 34 | madjusmdetlem4 |  |-  ( ph -> ( J ( K ` M ) I ) = ( ( Z ` ( -u 1 ^ ( I + J ) ) ) .x. ( E ` ( I ( subMat1 ` M ) J ) ) ) ) |