Step |
Hyp |
Ref |
Expression |
1 |
|
madjusmdet.b |
|- B = ( Base ` A ) |
2 |
|
madjusmdet.a |
|- A = ( ( 1 ... N ) Mat R ) |
3 |
|
madjusmdet.d |
|- D = ( ( 1 ... N ) maDet R ) |
4 |
|
madjusmdet.k |
|- K = ( ( 1 ... N ) maAdju R ) |
5 |
|
madjusmdet.t |
|- .x. = ( .r ` R ) |
6 |
|
madjusmdet.z |
|- Z = ( ZRHom ` R ) |
7 |
|
madjusmdet.e |
|- E = ( ( 1 ... ( N - 1 ) ) maDet R ) |
8 |
|
madjusmdet.n |
|- ( ph -> N e. NN ) |
9 |
|
madjusmdet.r |
|- ( ph -> R e. CRing ) |
10 |
|
madjusmdet.i |
|- ( ph -> I e. ( 1 ... N ) ) |
11 |
|
madjusmdet.j |
|- ( ph -> J e. ( 1 ... N ) ) |
12 |
|
madjusmdet.m |
|- ( ph -> M e. B ) |
13 |
|
eqeq1 |
|- ( k = i -> ( k = 1 <-> i = 1 ) ) |
14 |
|
breq1 |
|- ( k = i -> ( k <_ I <-> i <_ I ) ) |
15 |
|
oveq1 |
|- ( k = i -> ( k - 1 ) = ( i - 1 ) ) |
16 |
|
id |
|- ( k = i -> k = i ) |
17 |
14 15 16
|
ifbieq12d |
|- ( k = i -> if ( k <_ I , ( k - 1 ) , k ) = if ( i <_ I , ( i - 1 ) , i ) ) |
18 |
13 17
|
ifbieq2d |
|- ( k = i -> if ( k = 1 , I , if ( k <_ I , ( k - 1 ) , k ) ) = if ( i = 1 , I , if ( i <_ I , ( i - 1 ) , i ) ) ) |
19 |
18
|
cbvmptv |
|- ( k e. ( 1 ... N ) |-> if ( k = 1 , I , if ( k <_ I , ( k - 1 ) , k ) ) ) = ( i e. ( 1 ... N ) |-> if ( i = 1 , I , if ( i <_ I , ( i - 1 ) , i ) ) ) |
20 |
|
breq1 |
|- ( k = i -> ( k <_ N <-> i <_ N ) ) |
21 |
20 15 16
|
ifbieq12d |
|- ( k = i -> if ( k <_ N , ( k - 1 ) , k ) = if ( i <_ N , ( i - 1 ) , i ) ) |
22 |
13 21
|
ifbieq2d |
|- ( k = i -> if ( k = 1 , N , if ( k <_ N , ( k - 1 ) , k ) ) = if ( i = 1 , N , if ( i <_ N , ( i - 1 ) , i ) ) ) |
23 |
22
|
cbvmptv |
|- ( k e. ( 1 ... N ) |-> if ( k = 1 , N , if ( k <_ N , ( k - 1 ) , k ) ) ) = ( i e. ( 1 ... N ) |-> if ( i = 1 , N , if ( i <_ N , ( i - 1 ) , i ) ) ) |
24 |
|
eqeq1 |
|- ( l = j -> ( l = 1 <-> j = 1 ) ) |
25 |
|
breq1 |
|- ( l = j -> ( l <_ J <-> j <_ J ) ) |
26 |
|
oveq1 |
|- ( l = j -> ( l - 1 ) = ( j - 1 ) ) |
27 |
|
id |
|- ( l = j -> l = j ) |
28 |
25 26 27
|
ifbieq12d |
|- ( l = j -> if ( l <_ J , ( l - 1 ) , l ) = if ( j <_ J , ( j - 1 ) , j ) ) |
29 |
24 28
|
ifbieq2d |
|- ( l = j -> if ( l = 1 , J , if ( l <_ J , ( l - 1 ) , l ) ) = if ( j = 1 , J , if ( j <_ J , ( j - 1 ) , j ) ) ) |
30 |
29
|
cbvmptv |
|- ( l e. ( 1 ... N ) |-> if ( l = 1 , J , if ( l <_ J , ( l - 1 ) , l ) ) ) = ( j e. ( 1 ... N ) |-> if ( j = 1 , J , if ( j <_ J , ( j - 1 ) , j ) ) ) |
31 |
|
breq1 |
|- ( l = j -> ( l <_ N <-> j <_ N ) ) |
32 |
31 26 27
|
ifbieq12d |
|- ( l = j -> if ( l <_ N , ( l - 1 ) , l ) = if ( j <_ N , ( j - 1 ) , j ) ) |
33 |
24 32
|
ifbieq2d |
|- ( l = j -> if ( l = 1 , N , if ( l <_ N , ( l - 1 ) , l ) ) = if ( j = 1 , N , if ( j <_ N , ( j - 1 ) , j ) ) ) |
34 |
33
|
cbvmptv |
|- ( l e. ( 1 ... N ) |-> if ( l = 1 , N , if ( l <_ N , ( l - 1 ) , l ) ) ) = ( j e. ( 1 ... N ) |-> if ( j = 1 , N , if ( j <_ N , ( j - 1 ) , j ) ) ) |
35 |
1 2 3 4 5 6 7 8 9 10 11 12 19 23 30 34
|
madjusmdetlem4 |
|- ( ph -> ( J ( K ` M ) I ) = ( ( Z ` ( -u 1 ^ ( I + J ) ) ) .x. ( E ` ( I ( subMat1 ` M ) J ) ) ) ) |