| Step |
Hyp |
Ref |
Expression |
| 1 |
|
madjusmdet.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
| 2 |
|
madjusmdet.a |
⊢ 𝐴 = ( ( 1 ... 𝑁 ) Mat 𝑅 ) |
| 3 |
|
madjusmdet.d |
⊢ 𝐷 = ( ( 1 ... 𝑁 ) maDet 𝑅 ) |
| 4 |
|
madjusmdet.k |
⊢ 𝐾 = ( ( 1 ... 𝑁 ) maAdju 𝑅 ) |
| 5 |
|
madjusmdet.t |
⊢ · = ( .r ‘ 𝑅 ) |
| 6 |
|
madjusmdet.z |
⊢ 𝑍 = ( ℤRHom ‘ 𝑅 ) |
| 7 |
|
madjusmdet.e |
⊢ 𝐸 = ( ( 1 ... ( 𝑁 − 1 ) ) maDet 𝑅 ) |
| 8 |
|
madjusmdet.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 9 |
|
madjusmdet.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
| 10 |
|
madjusmdet.i |
⊢ ( 𝜑 → 𝐼 ∈ ( 1 ... 𝑁 ) ) |
| 11 |
|
madjusmdet.j |
⊢ ( 𝜑 → 𝐽 ∈ ( 1 ... 𝑁 ) ) |
| 12 |
|
madjusmdet.m |
⊢ ( 𝜑 → 𝑀 ∈ 𝐵 ) |
| 13 |
|
eqeq1 |
⊢ ( 𝑘 = 𝑖 → ( 𝑘 = 1 ↔ 𝑖 = 1 ) ) |
| 14 |
|
breq1 |
⊢ ( 𝑘 = 𝑖 → ( 𝑘 ≤ 𝐼 ↔ 𝑖 ≤ 𝐼 ) ) |
| 15 |
|
oveq1 |
⊢ ( 𝑘 = 𝑖 → ( 𝑘 − 1 ) = ( 𝑖 − 1 ) ) |
| 16 |
|
id |
⊢ ( 𝑘 = 𝑖 → 𝑘 = 𝑖 ) |
| 17 |
14 15 16
|
ifbieq12d |
⊢ ( 𝑘 = 𝑖 → if ( 𝑘 ≤ 𝐼 , ( 𝑘 − 1 ) , 𝑘 ) = if ( 𝑖 ≤ 𝐼 , ( 𝑖 − 1 ) , 𝑖 ) ) |
| 18 |
13 17
|
ifbieq2d |
⊢ ( 𝑘 = 𝑖 → if ( 𝑘 = 1 , 𝐼 , if ( 𝑘 ≤ 𝐼 , ( 𝑘 − 1 ) , 𝑘 ) ) = if ( 𝑖 = 1 , 𝐼 , if ( 𝑖 ≤ 𝐼 , ( 𝑖 − 1 ) , 𝑖 ) ) ) |
| 19 |
18
|
cbvmptv |
⊢ ( 𝑘 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑘 = 1 , 𝐼 , if ( 𝑘 ≤ 𝐼 , ( 𝑘 − 1 ) , 𝑘 ) ) ) = ( 𝑖 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑖 = 1 , 𝐼 , if ( 𝑖 ≤ 𝐼 , ( 𝑖 − 1 ) , 𝑖 ) ) ) |
| 20 |
|
breq1 |
⊢ ( 𝑘 = 𝑖 → ( 𝑘 ≤ 𝑁 ↔ 𝑖 ≤ 𝑁 ) ) |
| 21 |
20 15 16
|
ifbieq12d |
⊢ ( 𝑘 = 𝑖 → if ( 𝑘 ≤ 𝑁 , ( 𝑘 − 1 ) , 𝑘 ) = if ( 𝑖 ≤ 𝑁 , ( 𝑖 − 1 ) , 𝑖 ) ) |
| 22 |
13 21
|
ifbieq2d |
⊢ ( 𝑘 = 𝑖 → if ( 𝑘 = 1 , 𝑁 , if ( 𝑘 ≤ 𝑁 , ( 𝑘 − 1 ) , 𝑘 ) ) = if ( 𝑖 = 1 , 𝑁 , if ( 𝑖 ≤ 𝑁 , ( 𝑖 − 1 ) , 𝑖 ) ) ) |
| 23 |
22
|
cbvmptv |
⊢ ( 𝑘 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑘 = 1 , 𝑁 , if ( 𝑘 ≤ 𝑁 , ( 𝑘 − 1 ) , 𝑘 ) ) ) = ( 𝑖 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑖 = 1 , 𝑁 , if ( 𝑖 ≤ 𝑁 , ( 𝑖 − 1 ) , 𝑖 ) ) ) |
| 24 |
|
eqeq1 |
⊢ ( 𝑙 = 𝑗 → ( 𝑙 = 1 ↔ 𝑗 = 1 ) ) |
| 25 |
|
breq1 |
⊢ ( 𝑙 = 𝑗 → ( 𝑙 ≤ 𝐽 ↔ 𝑗 ≤ 𝐽 ) ) |
| 26 |
|
oveq1 |
⊢ ( 𝑙 = 𝑗 → ( 𝑙 − 1 ) = ( 𝑗 − 1 ) ) |
| 27 |
|
id |
⊢ ( 𝑙 = 𝑗 → 𝑙 = 𝑗 ) |
| 28 |
25 26 27
|
ifbieq12d |
⊢ ( 𝑙 = 𝑗 → if ( 𝑙 ≤ 𝐽 , ( 𝑙 − 1 ) , 𝑙 ) = if ( 𝑗 ≤ 𝐽 , ( 𝑗 − 1 ) , 𝑗 ) ) |
| 29 |
24 28
|
ifbieq2d |
⊢ ( 𝑙 = 𝑗 → if ( 𝑙 = 1 , 𝐽 , if ( 𝑙 ≤ 𝐽 , ( 𝑙 − 1 ) , 𝑙 ) ) = if ( 𝑗 = 1 , 𝐽 , if ( 𝑗 ≤ 𝐽 , ( 𝑗 − 1 ) , 𝑗 ) ) ) |
| 30 |
29
|
cbvmptv |
⊢ ( 𝑙 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑙 = 1 , 𝐽 , if ( 𝑙 ≤ 𝐽 , ( 𝑙 − 1 ) , 𝑙 ) ) ) = ( 𝑗 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑗 = 1 , 𝐽 , if ( 𝑗 ≤ 𝐽 , ( 𝑗 − 1 ) , 𝑗 ) ) ) |
| 31 |
|
breq1 |
⊢ ( 𝑙 = 𝑗 → ( 𝑙 ≤ 𝑁 ↔ 𝑗 ≤ 𝑁 ) ) |
| 32 |
31 26 27
|
ifbieq12d |
⊢ ( 𝑙 = 𝑗 → if ( 𝑙 ≤ 𝑁 , ( 𝑙 − 1 ) , 𝑙 ) = if ( 𝑗 ≤ 𝑁 , ( 𝑗 − 1 ) , 𝑗 ) ) |
| 33 |
24 32
|
ifbieq2d |
⊢ ( 𝑙 = 𝑗 → if ( 𝑙 = 1 , 𝑁 , if ( 𝑙 ≤ 𝑁 , ( 𝑙 − 1 ) , 𝑙 ) ) = if ( 𝑗 = 1 , 𝑁 , if ( 𝑗 ≤ 𝑁 , ( 𝑗 − 1 ) , 𝑗 ) ) ) |
| 34 |
33
|
cbvmptv |
⊢ ( 𝑙 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑙 = 1 , 𝑁 , if ( 𝑙 ≤ 𝑁 , ( 𝑙 − 1 ) , 𝑙 ) ) ) = ( 𝑗 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑗 = 1 , 𝑁 , if ( 𝑗 ≤ 𝑁 , ( 𝑗 − 1 ) , 𝑗 ) ) ) |
| 35 |
1 2 3 4 5 6 7 8 9 10 11 12 19 23 30 34
|
madjusmdetlem4 |
⊢ ( 𝜑 → ( 𝐽 ( 𝐾 ‘ 𝑀 ) 𝐼 ) = ( ( 𝑍 ‘ ( - 1 ↑ ( 𝐼 + 𝐽 ) ) ) · ( 𝐸 ‘ ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝐽 ) ) ) ) |