| Step | Hyp | Ref | Expression | 
						
							| 1 |  | madjusmdet.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 2 |  | madjusmdet.a | ⊢ 𝐴  =  ( ( 1 ... 𝑁 )  Mat  𝑅 ) | 
						
							| 3 |  | madjusmdet.d | ⊢ 𝐷  =  ( ( 1 ... 𝑁 )  maDet  𝑅 ) | 
						
							| 4 |  | madjusmdet.k | ⊢ 𝐾  =  ( ( 1 ... 𝑁 )  maAdju  𝑅 ) | 
						
							| 5 |  | madjusmdet.t | ⊢  ·   =  ( .r ‘ 𝑅 ) | 
						
							| 6 |  | madjusmdet.z | ⊢ 𝑍  =  ( ℤRHom ‘ 𝑅 ) | 
						
							| 7 |  | madjusmdet.e | ⊢ 𝐸  =  ( ( 1 ... ( 𝑁  −  1 ) )  maDet  𝑅 ) | 
						
							| 8 |  | madjusmdet.n | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 9 |  | madjusmdet.r | ⊢ ( 𝜑  →  𝑅  ∈  CRing ) | 
						
							| 10 |  | madjusmdet.i | ⊢ ( 𝜑  →  𝐼  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 11 |  | madjusmdet.j | ⊢ ( 𝜑  →  𝐽  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 12 |  | madjusmdet.m | ⊢ ( 𝜑  →  𝑀  ∈  𝐵 ) | 
						
							| 13 |  | eqeq1 | ⊢ ( 𝑘  =  𝑖  →  ( 𝑘  =  1  ↔  𝑖  =  1 ) ) | 
						
							| 14 |  | breq1 | ⊢ ( 𝑘  =  𝑖  →  ( 𝑘  ≤  𝐼  ↔  𝑖  ≤  𝐼 ) ) | 
						
							| 15 |  | oveq1 | ⊢ ( 𝑘  =  𝑖  →  ( 𝑘  −  1 )  =  ( 𝑖  −  1 ) ) | 
						
							| 16 |  | id | ⊢ ( 𝑘  =  𝑖  →  𝑘  =  𝑖 ) | 
						
							| 17 | 14 15 16 | ifbieq12d | ⊢ ( 𝑘  =  𝑖  →  if ( 𝑘  ≤  𝐼 ,  ( 𝑘  −  1 ) ,  𝑘 )  =  if ( 𝑖  ≤  𝐼 ,  ( 𝑖  −  1 ) ,  𝑖 ) ) | 
						
							| 18 | 13 17 | ifbieq2d | ⊢ ( 𝑘  =  𝑖  →  if ( 𝑘  =  1 ,  𝐼 ,  if ( 𝑘  ≤  𝐼 ,  ( 𝑘  −  1 ) ,  𝑘 ) )  =  if ( 𝑖  =  1 ,  𝐼 ,  if ( 𝑖  ≤  𝐼 ,  ( 𝑖  −  1 ) ,  𝑖 ) ) ) | 
						
							| 19 | 18 | cbvmptv | ⊢ ( 𝑘  ∈  ( 1 ... 𝑁 )  ↦  if ( 𝑘  =  1 ,  𝐼 ,  if ( 𝑘  ≤  𝐼 ,  ( 𝑘  −  1 ) ,  𝑘 ) ) )  =  ( 𝑖  ∈  ( 1 ... 𝑁 )  ↦  if ( 𝑖  =  1 ,  𝐼 ,  if ( 𝑖  ≤  𝐼 ,  ( 𝑖  −  1 ) ,  𝑖 ) ) ) | 
						
							| 20 |  | breq1 | ⊢ ( 𝑘  =  𝑖  →  ( 𝑘  ≤  𝑁  ↔  𝑖  ≤  𝑁 ) ) | 
						
							| 21 | 20 15 16 | ifbieq12d | ⊢ ( 𝑘  =  𝑖  →  if ( 𝑘  ≤  𝑁 ,  ( 𝑘  −  1 ) ,  𝑘 )  =  if ( 𝑖  ≤  𝑁 ,  ( 𝑖  −  1 ) ,  𝑖 ) ) | 
						
							| 22 | 13 21 | ifbieq2d | ⊢ ( 𝑘  =  𝑖  →  if ( 𝑘  =  1 ,  𝑁 ,  if ( 𝑘  ≤  𝑁 ,  ( 𝑘  −  1 ) ,  𝑘 ) )  =  if ( 𝑖  =  1 ,  𝑁 ,  if ( 𝑖  ≤  𝑁 ,  ( 𝑖  −  1 ) ,  𝑖 ) ) ) | 
						
							| 23 | 22 | cbvmptv | ⊢ ( 𝑘  ∈  ( 1 ... 𝑁 )  ↦  if ( 𝑘  =  1 ,  𝑁 ,  if ( 𝑘  ≤  𝑁 ,  ( 𝑘  −  1 ) ,  𝑘 ) ) )  =  ( 𝑖  ∈  ( 1 ... 𝑁 )  ↦  if ( 𝑖  =  1 ,  𝑁 ,  if ( 𝑖  ≤  𝑁 ,  ( 𝑖  −  1 ) ,  𝑖 ) ) ) | 
						
							| 24 |  | eqeq1 | ⊢ ( 𝑙  =  𝑗  →  ( 𝑙  =  1  ↔  𝑗  =  1 ) ) | 
						
							| 25 |  | breq1 | ⊢ ( 𝑙  =  𝑗  →  ( 𝑙  ≤  𝐽  ↔  𝑗  ≤  𝐽 ) ) | 
						
							| 26 |  | oveq1 | ⊢ ( 𝑙  =  𝑗  →  ( 𝑙  −  1 )  =  ( 𝑗  −  1 ) ) | 
						
							| 27 |  | id | ⊢ ( 𝑙  =  𝑗  →  𝑙  =  𝑗 ) | 
						
							| 28 | 25 26 27 | ifbieq12d | ⊢ ( 𝑙  =  𝑗  →  if ( 𝑙  ≤  𝐽 ,  ( 𝑙  −  1 ) ,  𝑙 )  =  if ( 𝑗  ≤  𝐽 ,  ( 𝑗  −  1 ) ,  𝑗 ) ) | 
						
							| 29 | 24 28 | ifbieq2d | ⊢ ( 𝑙  =  𝑗  →  if ( 𝑙  =  1 ,  𝐽 ,  if ( 𝑙  ≤  𝐽 ,  ( 𝑙  −  1 ) ,  𝑙 ) )  =  if ( 𝑗  =  1 ,  𝐽 ,  if ( 𝑗  ≤  𝐽 ,  ( 𝑗  −  1 ) ,  𝑗 ) ) ) | 
						
							| 30 | 29 | cbvmptv | ⊢ ( 𝑙  ∈  ( 1 ... 𝑁 )  ↦  if ( 𝑙  =  1 ,  𝐽 ,  if ( 𝑙  ≤  𝐽 ,  ( 𝑙  −  1 ) ,  𝑙 ) ) )  =  ( 𝑗  ∈  ( 1 ... 𝑁 )  ↦  if ( 𝑗  =  1 ,  𝐽 ,  if ( 𝑗  ≤  𝐽 ,  ( 𝑗  −  1 ) ,  𝑗 ) ) ) | 
						
							| 31 |  | breq1 | ⊢ ( 𝑙  =  𝑗  →  ( 𝑙  ≤  𝑁  ↔  𝑗  ≤  𝑁 ) ) | 
						
							| 32 | 31 26 27 | ifbieq12d | ⊢ ( 𝑙  =  𝑗  →  if ( 𝑙  ≤  𝑁 ,  ( 𝑙  −  1 ) ,  𝑙 )  =  if ( 𝑗  ≤  𝑁 ,  ( 𝑗  −  1 ) ,  𝑗 ) ) | 
						
							| 33 | 24 32 | ifbieq2d | ⊢ ( 𝑙  =  𝑗  →  if ( 𝑙  =  1 ,  𝑁 ,  if ( 𝑙  ≤  𝑁 ,  ( 𝑙  −  1 ) ,  𝑙 ) )  =  if ( 𝑗  =  1 ,  𝑁 ,  if ( 𝑗  ≤  𝑁 ,  ( 𝑗  −  1 ) ,  𝑗 ) ) ) | 
						
							| 34 | 33 | cbvmptv | ⊢ ( 𝑙  ∈  ( 1 ... 𝑁 )  ↦  if ( 𝑙  =  1 ,  𝑁 ,  if ( 𝑙  ≤  𝑁 ,  ( 𝑙  −  1 ) ,  𝑙 ) ) )  =  ( 𝑗  ∈  ( 1 ... 𝑁 )  ↦  if ( 𝑗  =  1 ,  𝑁 ,  if ( 𝑗  ≤  𝑁 ,  ( 𝑗  −  1 ) ,  𝑗 ) ) ) | 
						
							| 35 | 1 2 3 4 5 6 7 8 9 10 11 12 19 23 30 34 | madjusmdetlem4 | ⊢ ( 𝜑  →  ( 𝐽 ( 𝐾 ‘ 𝑀 ) 𝐼 )  =  ( ( 𝑍 ‘ ( - 1 ↑ ( 𝐼  +  𝐽 ) ) )  ·  ( 𝐸 ‘ ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝐽 ) ) ) ) |