Metamath Proof Explorer


Theorem madjusmdet

Description: Express the cofactor of the matrix, i.e. the entries of its adjunct matrix, using determinant of submatrices. (Contributed by Thierry Arnoux, 23-Aug-2020)

Ref Expression
Hypotheses madjusmdet.b B = Base A
madjusmdet.a A = 1 N Mat R
madjusmdet.d D = 1 N maDet R
madjusmdet.k K = 1 N maAdju R
madjusmdet.t · ˙ = R
madjusmdet.z Z = ℤRHom R
madjusmdet.e E = 1 N 1 maDet R
madjusmdet.n φ N
madjusmdet.r φ R CRing
madjusmdet.i φ I 1 N
madjusmdet.j φ J 1 N
madjusmdet.m φ M B
Assertion madjusmdet φ J K M I = Z 1 I + J · ˙ E I subMat 1 M J

Proof

Step Hyp Ref Expression
1 madjusmdet.b B = Base A
2 madjusmdet.a A = 1 N Mat R
3 madjusmdet.d D = 1 N maDet R
4 madjusmdet.k K = 1 N maAdju R
5 madjusmdet.t · ˙ = R
6 madjusmdet.z Z = ℤRHom R
7 madjusmdet.e E = 1 N 1 maDet R
8 madjusmdet.n φ N
9 madjusmdet.r φ R CRing
10 madjusmdet.i φ I 1 N
11 madjusmdet.j φ J 1 N
12 madjusmdet.m φ M B
13 eqeq1 k = i k = 1 i = 1
14 breq1 k = i k I i I
15 oveq1 k = i k 1 = i 1
16 id k = i k = i
17 14 15 16 ifbieq12d k = i if k I k 1 k = if i I i 1 i
18 13 17 ifbieq2d k = i if k = 1 I if k I k 1 k = if i = 1 I if i I i 1 i
19 18 cbvmptv k 1 N if k = 1 I if k I k 1 k = i 1 N if i = 1 I if i I i 1 i
20 breq1 k = i k N i N
21 20 15 16 ifbieq12d k = i if k N k 1 k = if i N i 1 i
22 13 21 ifbieq2d k = i if k = 1 N if k N k 1 k = if i = 1 N if i N i 1 i
23 22 cbvmptv k 1 N if k = 1 N if k N k 1 k = i 1 N if i = 1 N if i N i 1 i
24 eqeq1 l = j l = 1 j = 1
25 breq1 l = j l J j J
26 oveq1 l = j l 1 = j 1
27 id l = j l = j
28 25 26 27 ifbieq12d l = j if l J l 1 l = if j J j 1 j
29 24 28 ifbieq2d l = j if l = 1 J if l J l 1 l = if j = 1 J if j J j 1 j
30 29 cbvmptv l 1 N if l = 1 J if l J l 1 l = j 1 N if j = 1 J if j J j 1 j
31 breq1 l = j l N j N
32 31 26 27 ifbieq12d l = j if l N l 1 l = if j N j 1 j
33 24 32 ifbieq2d l = j if l = 1 N if l N l 1 l = if j = 1 N if j N j 1 j
34 33 cbvmptv l 1 N if l = 1 N if l N l 1 l = j 1 N if j = 1 N if j N j 1 j
35 1 2 3 4 5 6 7 8 9 10 11 12 19 23 30 34 madjusmdetlem4 φ J K M I = Z 1 I + J · ˙ E I subMat 1 M J