Metamath Proof Explorer


Theorem madjusmdetlem4

Description: Lemma for madjusmdet . (Contributed by Thierry Arnoux, 22-Aug-2020)

Ref Expression
Hypotheses madjusmdet.b B = Base A
madjusmdet.a A = 1 N Mat R
madjusmdet.d D = 1 N maDet R
madjusmdet.k K = 1 N maAdju R
madjusmdet.t · ˙ = R
madjusmdet.z Z = ℤRHom R
madjusmdet.e E = 1 N 1 maDet R
madjusmdet.n φ N
madjusmdet.r φ R CRing
madjusmdet.i φ I 1 N
madjusmdet.j φ J 1 N
madjusmdet.m φ M B
madjusmdetlem2.p P = i 1 N if i = 1 I if i I i 1 i
madjusmdetlem2.s S = i 1 N if i = 1 N if i N i 1 i
madjusmdetlem4.q Q = j 1 N if j = 1 J if j J j 1 j
madjusmdetlem4.t T = j 1 N if j = 1 N if j N j 1 j
Assertion madjusmdetlem4 φ J K M I = Z 1 I + J · ˙ E I subMat 1 M J

Proof

Step Hyp Ref Expression
1 madjusmdet.b B = Base A
2 madjusmdet.a A = 1 N Mat R
3 madjusmdet.d D = 1 N maDet R
4 madjusmdet.k K = 1 N maAdju R
5 madjusmdet.t · ˙ = R
6 madjusmdet.z Z = ℤRHom R
7 madjusmdet.e E = 1 N 1 maDet R
8 madjusmdet.n φ N
9 madjusmdet.r φ R CRing
10 madjusmdet.i φ I 1 N
11 madjusmdet.j φ J 1 N
12 madjusmdet.m φ M B
13 madjusmdetlem2.p P = i 1 N if i = 1 I if i I i 1 i
14 madjusmdetlem2.s S = i 1 N if i = 1 N if i N i 1 i
15 madjusmdetlem4.q Q = j 1 N if j = 1 J if j J j 1 j
16 madjusmdetlem4.t T = j 1 N if j = 1 N if j N j 1 j
17 eqid Base SymGrp 1 N = Base SymGrp 1 N
18 eqid pmSgn 1 N = pmSgn 1 N
19 eqid I 1 N minMatR1 R M J = I 1 N minMatR1 R M J
20 fveq2 k = i P S -1 k = P S -1 i
21 20 oveq1d k = i P S -1 k I 1 N minMatR1 R M J Q T -1 l = P S -1 i I 1 N minMatR1 R M J Q T -1 l
22 fveq2 l = j Q T -1 l = Q T -1 j
23 22 oveq2d l = j P S -1 i I 1 N minMatR1 R M J Q T -1 l = P S -1 i I 1 N minMatR1 R M J Q T -1 j
24 21 23 cbvmpov k 1 N , l 1 N P S -1 k I 1 N minMatR1 R M J Q T -1 l = i 1 N , j 1 N P S -1 i I 1 N minMatR1 R M J Q T -1 j
25 eqid 1 N = 1 N
26 eqid SymGrp 1 N = SymGrp 1 N
27 25 13 26 17 fzto1st I 1 N P Base SymGrp 1 N
28 10 27 syl φ P Base SymGrp 1 N
29 nnuz = 1
30 8 29 eleqtrdi φ N 1
31 eluzfz2 N 1 N 1 N
32 30 31 syl φ N 1 N
33 25 14 26 17 fzto1st N 1 N S Base SymGrp 1 N
34 32 33 syl φ S Base SymGrp 1 N
35 eqid inv g SymGrp 1 N = inv g SymGrp 1 N
36 26 17 35 symginv S Base SymGrp 1 N inv g SymGrp 1 N S = S -1
37 34 36 syl φ inv g SymGrp 1 N S = S -1
38 fzfid φ 1 N Fin
39 26 symggrp 1 N Fin SymGrp 1 N Grp
40 38 39 syl φ SymGrp 1 N Grp
41 17 35 grpinvcl SymGrp 1 N Grp S Base SymGrp 1 N inv g SymGrp 1 N S Base SymGrp 1 N
42 40 34 41 syl2anc φ inv g SymGrp 1 N S Base SymGrp 1 N
43 37 42 eqeltrrd φ S -1 Base SymGrp 1 N
44 eqid + SymGrp 1 N = + SymGrp 1 N
45 26 17 44 symgov P Base SymGrp 1 N S -1 Base SymGrp 1 N P + SymGrp 1 N S -1 = P S -1
46 26 17 44 symgcl P Base SymGrp 1 N S -1 Base SymGrp 1 N P + SymGrp 1 N S -1 Base SymGrp 1 N
47 45 46 eqeltrrd P Base SymGrp 1 N S -1 Base SymGrp 1 N P S -1 Base SymGrp 1 N
48 28 43 47 syl2anc φ P S -1 Base SymGrp 1 N
49 25 15 26 17 fzto1st J 1 N Q Base SymGrp 1 N
50 11 49 syl φ Q Base SymGrp 1 N
51 25 16 26 17 fzto1st N 1 N T Base SymGrp 1 N
52 32 51 syl φ T Base SymGrp 1 N
53 26 17 35 symginv T Base SymGrp 1 N inv g SymGrp 1 N T = T -1
54 52 53 syl φ inv g SymGrp 1 N T = T -1
55 17 35 grpinvcl SymGrp 1 N Grp T Base SymGrp 1 N inv g SymGrp 1 N T Base SymGrp 1 N
56 40 52 55 syl2anc φ inv g SymGrp 1 N T Base SymGrp 1 N
57 54 56 eqeltrrd φ T -1 Base SymGrp 1 N
58 26 17 44 symgov Q Base SymGrp 1 N T -1 Base SymGrp 1 N Q + SymGrp 1 N T -1 = Q T -1
59 26 17 44 symgcl Q Base SymGrp 1 N T -1 Base SymGrp 1 N Q + SymGrp 1 N T -1 Base SymGrp 1 N
60 58 59 eqeltrrd Q Base SymGrp 1 N T -1 Base SymGrp 1 N Q T -1 Base SymGrp 1 N
61 50 57 60 syl2anc φ Q T -1 Base SymGrp 1 N
62 26 17 symgbasf1o S Base SymGrp 1 N S : 1 N 1-1 onto 1 N
63 34 62 syl φ S : 1 N 1-1 onto 1 N
64 f1of1 S : 1 N 1-1 onto 1 N S : 1 N 1-1 1 N
65 df-f1 S : 1 N 1-1 1 N S : 1 N 1 N Fun S -1
66 65 simprbi S : 1 N 1-1 1 N Fun S -1
67 63 64 66 3syl φ Fun S -1
68 f1ocnv S : 1 N 1-1 onto 1 N S -1 : 1 N 1-1 onto 1 N
69 f1odm S -1 : 1 N 1-1 onto 1 N dom S -1 = 1 N
70 63 68 69 3syl φ dom S -1 = 1 N
71 32 70 eleqtrrd φ N dom S -1
72 fvco Fun S -1 N dom S -1 P S -1 N = P S -1 N
73 67 71 72 syl2anc φ P S -1 N = P S -1 N
74 25 14 26 17 fzto1stinvn N 1 N S -1 N = 1
75 32 74 syl φ S -1 N = 1
76 75 fveq2d φ P S -1 N = P 1
77 25 13 fzto1stfv1 I 1 N P 1 = I
78 10 77 syl φ P 1 = I
79 73 76 78 3eqtrd φ P S -1 N = I
80 26 17 symgbasf1o T Base SymGrp 1 N T : 1 N 1-1 onto 1 N
81 52 80 syl φ T : 1 N 1-1 onto 1 N
82 f1of1 T : 1 N 1-1 onto 1 N T : 1 N 1-1 1 N
83 df-f1 T : 1 N 1-1 1 N T : 1 N 1 N Fun T -1
84 83 simprbi T : 1 N 1-1 1 N Fun T -1
85 81 82 84 3syl φ Fun T -1
86 f1ocnv T : 1 N 1-1 onto 1 N T -1 : 1 N 1-1 onto 1 N
87 f1odm T -1 : 1 N 1-1 onto 1 N dom T -1 = 1 N
88 81 86 87 3syl φ dom T -1 = 1 N
89 32 88 eleqtrrd φ N dom T -1
90 fvco Fun T -1 N dom T -1 Q T -1 N = Q T -1 N
91 85 89 90 syl2anc φ Q T -1 N = Q T -1 N
92 25 16 26 17 fzto1stinvn N 1 N T -1 N = 1
93 32 92 syl φ T -1 N = 1
94 93 fveq2d φ Q T -1 N = Q 1
95 25 15 fzto1stfv1 J 1 N Q 1 = J
96 11 95 syl φ Q 1 = J
97 91 94 96 3eqtrd φ Q T -1 N = J
98 crngring R CRing R Ring
99 9 98 syl φ R Ring
100 2 1 minmar1cl R Ring M B I 1 N J 1 N I 1 N minMatR1 R M J B
101 99 12 10 11 100 syl22anc φ I 1 N minMatR1 R M J B
102 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 24 101 madjusmdetlem3 φ I subMat 1 I 1 N minMatR1 R M J J = N subMat 1 k 1 N , l 1 N P S -1 k I 1 N minMatR1 R M J Q T -1 l N
103 1 2 3 4 5 6 7 8 9 10 11 12 17 18 19 24 48 61 79 97 102 madjusmdetlem1 φ J K M I = Z pmSgn 1 N P S -1 pmSgn 1 N Q T -1 · ˙ E I subMat 1 M J
104 26 18 17 psgnco 1 N Fin P Base SymGrp 1 N S -1 Base SymGrp 1 N pmSgn 1 N P S -1 = pmSgn 1 N P pmSgn 1 N S -1
105 38 28 43 104 syl3anc φ pmSgn 1 N P S -1 = pmSgn 1 N P pmSgn 1 N S -1
106 25 13 26 17 18 psgnfzto1st I 1 N pmSgn 1 N P = 1 I + 1
107 10 106 syl φ pmSgn 1 N P = 1 I + 1
108 26 18 17 psgninv 1 N Fin S Base SymGrp 1 N pmSgn 1 N S -1 = pmSgn 1 N S
109 38 34 108 syl2anc φ pmSgn 1 N S -1 = pmSgn 1 N S
110 25 14 26 17 18 psgnfzto1st N 1 N pmSgn 1 N S = 1 N + 1
111 32 110 syl φ pmSgn 1 N S = 1 N + 1
112 109 111 eqtrd φ pmSgn 1 N S -1 = 1 N + 1
113 107 112 oveq12d φ pmSgn 1 N P pmSgn 1 N S -1 = 1 I + 1 1 N + 1
114 105 113 eqtrd φ pmSgn 1 N P S -1 = 1 I + 1 1 N + 1
115 26 18 17 psgnco 1 N Fin Q Base SymGrp 1 N T -1 Base SymGrp 1 N pmSgn 1 N Q T -1 = pmSgn 1 N Q pmSgn 1 N T -1
116 38 50 57 115 syl3anc φ pmSgn 1 N Q T -1 = pmSgn 1 N Q pmSgn 1 N T -1
117 25 15 26 17 18 psgnfzto1st J 1 N pmSgn 1 N Q = 1 J + 1
118 11 117 syl φ pmSgn 1 N Q = 1 J + 1
119 26 18 17 psgninv 1 N Fin T Base SymGrp 1 N pmSgn 1 N T -1 = pmSgn 1 N T
120 38 52 119 syl2anc φ pmSgn 1 N T -1 = pmSgn 1 N T
121 25 16 26 17 18 psgnfzto1st N 1 N pmSgn 1 N T = 1 N + 1
122 32 121 syl φ pmSgn 1 N T = 1 N + 1
123 120 122 eqtrd φ pmSgn 1 N T -1 = 1 N + 1
124 118 123 oveq12d φ pmSgn 1 N Q pmSgn 1 N T -1 = 1 J + 1 1 N + 1
125 116 124 eqtrd φ pmSgn 1 N Q T -1 = 1 J + 1 1 N + 1
126 114 125 oveq12d φ pmSgn 1 N P S -1 pmSgn 1 N Q T -1 = 1 I + 1 1 N + 1 1 J + 1 1 N + 1
127 1cnd φ 1
128 127 negcld φ 1
129 fz1ssnn 1 N
130 129 10 sselid φ I
131 130 nnnn0d φ I 0
132 1nn0 1 0
133 132 a1i φ 1 0
134 131 133 nn0addcld φ I + 1 0
135 128 134 expcld φ 1 I + 1
136 8 nnnn0d φ N 0
137 136 133 nn0addcld φ N + 1 0
138 128 137 expcld φ 1 N + 1
139 129 11 sselid φ J
140 139 nnnn0d φ J 0
141 140 133 nn0addcld φ J + 1 0
142 128 141 expcld φ 1 J + 1
143 135 138 142 138 mul4d φ 1 I + 1 1 N + 1 1 J + 1 1 N + 1 = 1 I + 1 1 J + 1 1 N + 1 1 N + 1
144 128 141 134 expaddd φ 1 I + 1 + J + 1 = 1 I + 1 1 J + 1
145 130 nncnd φ I
146 139 nncnd φ J
147 145 127 146 127 add4d φ I + 1 + J + 1 = I + J + 1 + 1
148 1p1e2 1 + 1 = 2
149 148 oveq2i I + J + 1 + 1 = I + J + 2
150 147 149 eqtrdi φ I + 1 + J + 1 = I + J + 2
151 150 oveq2d φ 1 I + 1 + J + 1 = 1 I + J + 2
152 2nn0 2 0
153 152 a1i φ 2 0
154 131 140 nn0addcld φ I + J 0
155 128 153 154 expaddd φ 1 I + J + 2 = 1 I + J 1 2
156 neg1sqe1 1 2 = 1
157 156 oveq2i 1 I + J 1 2 = 1 I + J 1
158 155 157 eqtrdi φ 1 I + J + 2 = 1 I + J 1
159 128 154 expcld φ 1 I + J
160 159 mulid1d φ 1 I + J 1 = 1 I + J
161 151 158 160 3eqtrd φ 1 I + 1 + J + 1 = 1 I + J
162 144 161 eqtr3d φ 1 I + 1 1 J + 1 = 1 I + J
163 137 nn0zd φ N + 1
164 m1expcl2 N + 1 1 N + 1 1 1
165 1neg1t1neg1 1 N + 1 1 1 1 N + 1 1 N + 1 = 1
166 163 164 165 3syl φ 1 N + 1 1 N + 1 = 1
167 162 166 oveq12d φ 1 I + 1 1 J + 1 1 N + 1 1 N + 1 = 1 I + J 1
168 143 167 160 3eqtrd φ 1 I + 1 1 N + 1 1 J + 1 1 N + 1 = 1 I + J
169 126 168 eqtrd φ pmSgn 1 N P S -1 pmSgn 1 N Q T -1 = 1 I + J
170 169 fveq2d φ Z pmSgn 1 N P S -1 pmSgn 1 N Q T -1 = Z 1 I + J
171 170 oveq1d φ Z pmSgn 1 N P S -1 pmSgn 1 N Q T -1 · ˙ E I subMat 1 M J = Z 1 I + J · ˙ E I subMat 1 M J
172 103 171 eqtrd φ J K M I = Z 1 I + J · ˙ E I subMat 1 M J