| Step | Hyp | Ref | Expression | 
						
							| 1 |  | madjusmdet.b |  |-  B = ( Base ` A ) | 
						
							| 2 |  | madjusmdet.a |  |-  A = ( ( 1 ... N ) Mat R ) | 
						
							| 3 |  | madjusmdet.d |  |-  D = ( ( 1 ... N ) maDet R ) | 
						
							| 4 |  | madjusmdet.k |  |-  K = ( ( 1 ... N ) maAdju R ) | 
						
							| 5 |  | madjusmdet.t |  |-  .x. = ( .r ` R ) | 
						
							| 6 |  | madjusmdet.z |  |-  Z = ( ZRHom ` R ) | 
						
							| 7 |  | madjusmdet.e |  |-  E = ( ( 1 ... ( N - 1 ) ) maDet R ) | 
						
							| 8 |  | madjusmdet.n |  |-  ( ph -> N e. NN ) | 
						
							| 9 |  | madjusmdet.r |  |-  ( ph -> R e. CRing ) | 
						
							| 10 |  | madjusmdet.i |  |-  ( ph -> I e. ( 1 ... N ) ) | 
						
							| 11 |  | madjusmdet.j |  |-  ( ph -> J e. ( 1 ... N ) ) | 
						
							| 12 |  | madjusmdet.m |  |-  ( ph -> M e. B ) | 
						
							| 13 |  | madjusmdetlem2.p |  |-  P = ( i e. ( 1 ... N ) |-> if ( i = 1 , I , if ( i <_ I , ( i - 1 ) , i ) ) ) | 
						
							| 14 |  | madjusmdetlem2.s |  |-  S = ( i e. ( 1 ... N ) |-> if ( i = 1 , N , if ( i <_ N , ( i - 1 ) , i ) ) ) | 
						
							| 15 |  | madjusmdetlem4.q |  |-  Q = ( j e. ( 1 ... N ) |-> if ( j = 1 , J , if ( j <_ J , ( j - 1 ) , j ) ) ) | 
						
							| 16 |  | madjusmdetlem4.t |  |-  T = ( j e. ( 1 ... N ) |-> if ( j = 1 , N , if ( j <_ N , ( j - 1 ) , j ) ) ) | 
						
							| 17 |  | eqid |  |-  ( Base ` ( SymGrp ` ( 1 ... N ) ) ) = ( Base ` ( SymGrp ` ( 1 ... N ) ) ) | 
						
							| 18 |  | eqid |  |-  ( pmSgn ` ( 1 ... N ) ) = ( pmSgn ` ( 1 ... N ) ) | 
						
							| 19 |  | eqid |  |-  ( I ( ( ( 1 ... N ) minMatR1 R ) ` M ) J ) = ( I ( ( ( 1 ... N ) minMatR1 R ) ` M ) J ) | 
						
							| 20 |  | fveq2 |  |-  ( k = i -> ( ( P o. `' S ) ` k ) = ( ( P o. `' S ) ` i ) ) | 
						
							| 21 | 20 | oveq1d |  |-  ( k = i -> ( ( ( P o. `' S ) ` k ) ( I ( ( ( 1 ... N ) minMatR1 R ) ` M ) J ) ( ( Q o. `' T ) ` l ) ) = ( ( ( P o. `' S ) ` i ) ( I ( ( ( 1 ... N ) minMatR1 R ) ` M ) J ) ( ( Q o. `' T ) ` l ) ) ) | 
						
							| 22 |  | fveq2 |  |-  ( l = j -> ( ( Q o. `' T ) ` l ) = ( ( Q o. `' T ) ` j ) ) | 
						
							| 23 | 22 | oveq2d |  |-  ( l = j -> ( ( ( P o. `' S ) ` i ) ( I ( ( ( 1 ... N ) minMatR1 R ) ` M ) J ) ( ( Q o. `' T ) ` l ) ) = ( ( ( P o. `' S ) ` i ) ( I ( ( ( 1 ... N ) minMatR1 R ) ` M ) J ) ( ( Q o. `' T ) ` j ) ) ) | 
						
							| 24 | 21 23 | cbvmpov |  |-  ( k e. ( 1 ... N ) , l e. ( 1 ... N ) |-> ( ( ( P o. `' S ) ` k ) ( I ( ( ( 1 ... N ) minMatR1 R ) ` M ) J ) ( ( Q o. `' T ) ` l ) ) ) = ( i e. ( 1 ... N ) , j e. ( 1 ... N ) |-> ( ( ( P o. `' S ) ` i ) ( I ( ( ( 1 ... N ) minMatR1 R ) ` M ) J ) ( ( Q o. `' T ) ` j ) ) ) | 
						
							| 25 |  | eqid |  |-  ( 1 ... N ) = ( 1 ... N ) | 
						
							| 26 |  | eqid |  |-  ( SymGrp ` ( 1 ... N ) ) = ( SymGrp ` ( 1 ... N ) ) | 
						
							| 27 | 25 13 26 17 | fzto1st |  |-  ( I e. ( 1 ... N ) -> P e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) | 
						
							| 28 | 10 27 | syl |  |-  ( ph -> P e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) | 
						
							| 29 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 30 | 8 29 | eleqtrdi |  |-  ( ph -> N e. ( ZZ>= ` 1 ) ) | 
						
							| 31 |  | eluzfz2 |  |-  ( N e. ( ZZ>= ` 1 ) -> N e. ( 1 ... N ) ) | 
						
							| 32 | 30 31 | syl |  |-  ( ph -> N e. ( 1 ... N ) ) | 
						
							| 33 | 25 14 26 17 | fzto1st |  |-  ( N e. ( 1 ... N ) -> S e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) | 
						
							| 34 | 32 33 | syl |  |-  ( ph -> S e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) | 
						
							| 35 |  | eqid |  |-  ( invg ` ( SymGrp ` ( 1 ... N ) ) ) = ( invg ` ( SymGrp ` ( 1 ... N ) ) ) | 
						
							| 36 | 26 17 35 | symginv |  |-  ( S e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) -> ( ( invg ` ( SymGrp ` ( 1 ... N ) ) ) ` S ) = `' S ) | 
						
							| 37 | 34 36 | syl |  |-  ( ph -> ( ( invg ` ( SymGrp ` ( 1 ... N ) ) ) ` S ) = `' S ) | 
						
							| 38 |  | fzfid |  |-  ( ph -> ( 1 ... N ) e. Fin ) | 
						
							| 39 | 26 | symggrp |  |-  ( ( 1 ... N ) e. Fin -> ( SymGrp ` ( 1 ... N ) ) e. Grp ) | 
						
							| 40 | 38 39 | syl |  |-  ( ph -> ( SymGrp ` ( 1 ... N ) ) e. Grp ) | 
						
							| 41 | 17 35 | grpinvcl |  |-  ( ( ( SymGrp ` ( 1 ... N ) ) e. Grp /\ S e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) -> ( ( invg ` ( SymGrp ` ( 1 ... N ) ) ) ` S ) e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) | 
						
							| 42 | 40 34 41 | syl2anc |  |-  ( ph -> ( ( invg ` ( SymGrp ` ( 1 ... N ) ) ) ` S ) e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) | 
						
							| 43 | 37 42 | eqeltrrd |  |-  ( ph -> `' S e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) | 
						
							| 44 |  | eqid |  |-  ( +g ` ( SymGrp ` ( 1 ... N ) ) ) = ( +g ` ( SymGrp ` ( 1 ... N ) ) ) | 
						
							| 45 | 26 17 44 | symgov |  |-  ( ( P e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) /\ `' S e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) -> ( P ( +g ` ( SymGrp ` ( 1 ... N ) ) ) `' S ) = ( P o. `' S ) ) | 
						
							| 46 | 26 17 44 | symgcl |  |-  ( ( P e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) /\ `' S e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) -> ( P ( +g ` ( SymGrp ` ( 1 ... N ) ) ) `' S ) e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) | 
						
							| 47 | 45 46 | eqeltrrd |  |-  ( ( P e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) /\ `' S e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) -> ( P o. `' S ) e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) | 
						
							| 48 | 28 43 47 | syl2anc |  |-  ( ph -> ( P o. `' S ) e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) | 
						
							| 49 | 25 15 26 17 | fzto1st |  |-  ( J e. ( 1 ... N ) -> Q e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) | 
						
							| 50 | 11 49 | syl |  |-  ( ph -> Q e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) | 
						
							| 51 | 25 16 26 17 | fzto1st |  |-  ( N e. ( 1 ... N ) -> T e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) | 
						
							| 52 | 32 51 | syl |  |-  ( ph -> T e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) | 
						
							| 53 | 26 17 35 | symginv |  |-  ( T e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) -> ( ( invg ` ( SymGrp ` ( 1 ... N ) ) ) ` T ) = `' T ) | 
						
							| 54 | 52 53 | syl |  |-  ( ph -> ( ( invg ` ( SymGrp ` ( 1 ... N ) ) ) ` T ) = `' T ) | 
						
							| 55 | 17 35 | grpinvcl |  |-  ( ( ( SymGrp ` ( 1 ... N ) ) e. Grp /\ T e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) -> ( ( invg ` ( SymGrp ` ( 1 ... N ) ) ) ` T ) e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) | 
						
							| 56 | 40 52 55 | syl2anc |  |-  ( ph -> ( ( invg ` ( SymGrp ` ( 1 ... N ) ) ) ` T ) e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) | 
						
							| 57 | 54 56 | eqeltrrd |  |-  ( ph -> `' T e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) | 
						
							| 58 | 26 17 44 | symgov |  |-  ( ( Q e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) /\ `' T e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) -> ( Q ( +g ` ( SymGrp ` ( 1 ... N ) ) ) `' T ) = ( Q o. `' T ) ) | 
						
							| 59 | 26 17 44 | symgcl |  |-  ( ( Q e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) /\ `' T e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) -> ( Q ( +g ` ( SymGrp ` ( 1 ... N ) ) ) `' T ) e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) | 
						
							| 60 | 58 59 | eqeltrrd |  |-  ( ( Q e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) /\ `' T e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) -> ( Q o. `' T ) e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) | 
						
							| 61 | 50 57 60 | syl2anc |  |-  ( ph -> ( Q o. `' T ) e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) | 
						
							| 62 | 26 17 | symgbasf1o |  |-  ( S e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) -> S : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) | 
						
							| 63 | 34 62 | syl |  |-  ( ph -> S : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) | 
						
							| 64 |  | f1of1 |  |-  ( S : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> S : ( 1 ... N ) -1-1-> ( 1 ... N ) ) | 
						
							| 65 |  | df-f1 |  |-  ( S : ( 1 ... N ) -1-1-> ( 1 ... N ) <-> ( S : ( 1 ... N ) --> ( 1 ... N ) /\ Fun `' S ) ) | 
						
							| 66 | 65 | simprbi |  |-  ( S : ( 1 ... N ) -1-1-> ( 1 ... N ) -> Fun `' S ) | 
						
							| 67 | 63 64 66 | 3syl |  |-  ( ph -> Fun `' S ) | 
						
							| 68 |  | f1ocnv |  |-  ( S : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> `' S : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) | 
						
							| 69 |  | f1odm |  |-  ( `' S : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> dom `' S = ( 1 ... N ) ) | 
						
							| 70 | 63 68 69 | 3syl |  |-  ( ph -> dom `' S = ( 1 ... N ) ) | 
						
							| 71 | 32 70 | eleqtrrd |  |-  ( ph -> N e. dom `' S ) | 
						
							| 72 |  | fvco |  |-  ( ( Fun `' S /\ N e. dom `' S ) -> ( ( P o. `' S ) ` N ) = ( P ` ( `' S ` N ) ) ) | 
						
							| 73 | 67 71 72 | syl2anc |  |-  ( ph -> ( ( P o. `' S ) ` N ) = ( P ` ( `' S ` N ) ) ) | 
						
							| 74 | 25 14 26 17 | fzto1stinvn |  |-  ( N e. ( 1 ... N ) -> ( `' S ` N ) = 1 ) | 
						
							| 75 | 32 74 | syl |  |-  ( ph -> ( `' S ` N ) = 1 ) | 
						
							| 76 | 75 | fveq2d |  |-  ( ph -> ( P ` ( `' S ` N ) ) = ( P ` 1 ) ) | 
						
							| 77 | 25 13 | fzto1stfv1 |  |-  ( I e. ( 1 ... N ) -> ( P ` 1 ) = I ) | 
						
							| 78 | 10 77 | syl |  |-  ( ph -> ( P ` 1 ) = I ) | 
						
							| 79 | 73 76 78 | 3eqtrd |  |-  ( ph -> ( ( P o. `' S ) ` N ) = I ) | 
						
							| 80 | 26 17 | symgbasf1o |  |-  ( T e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) -> T : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) | 
						
							| 81 | 52 80 | syl |  |-  ( ph -> T : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) | 
						
							| 82 |  | f1of1 |  |-  ( T : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> T : ( 1 ... N ) -1-1-> ( 1 ... N ) ) | 
						
							| 83 |  | df-f1 |  |-  ( T : ( 1 ... N ) -1-1-> ( 1 ... N ) <-> ( T : ( 1 ... N ) --> ( 1 ... N ) /\ Fun `' T ) ) | 
						
							| 84 | 83 | simprbi |  |-  ( T : ( 1 ... N ) -1-1-> ( 1 ... N ) -> Fun `' T ) | 
						
							| 85 | 81 82 84 | 3syl |  |-  ( ph -> Fun `' T ) | 
						
							| 86 |  | f1ocnv |  |-  ( T : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> `' T : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) | 
						
							| 87 |  | f1odm |  |-  ( `' T : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> dom `' T = ( 1 ... N ) ) | 
						
							| 88 | 81 86 87 | 3syl |  |-  ( ph -> dom `' T = ( 1 ... N ) ) | 
						
							| 89 | 32 88 | eleqtrrd |  |-  ( ph -> N e. dom `' T ) | 
						
							| 90 |  | fvco |  |-  ( ( Fun `' T /\ N e. dom `' T ) -> ( ( Q o. `' T ) ` N ) = ( Q ` ( `' T ` N ) ) ) | 
						
							| 91 | 85 89 90 | syl2anc |  |-  ( ph -> ( ( Q o. `' T ) ` N ) = ( Q ` ( `' T ` N ) ) ) | 
						
							| 92 | 25 16 26 17 | fzto1stinvn |  |-  ( N e. ( 1 ... N ) -> ( `' T ` N ) = 1 ) | 
						
							| 93 | 32 92 | syl |  |-  ( ph -> ( `' T ` N ) = 1 ) | 
						
							| 94 | 93 | fveq2d |  |-  ( ph -> ( Q ` ( `' T ` N ) ) = ( Q ` 1 ) ) | 
						
							| 95 | 25 15 | fzto1stfv1 |  |-  ( J e. ( 1 ... N ) -> ( Q ` 1 ) = J ) | 
						
							| 96 | 11 95 | syl |  |-  ( ph -> ( Q ` 1 ) = J ) | 
						
							| 97 | 91 94 96 | 3eqtrd |  |-  ( ph -> ( ( Q o. `' T ) ` N ) = J ) | 
						
							| 98 |  | crngring |  |-  ( R e. CRing -> R e. Ring ) | 
						
							| 99 | 9 98 | syl |  |-  ( ph -> R e. Ring ) | 
						
							| 100 | 2 1 | minmar1cl |  |-  ( ( ( R e. Ring /\ M e. B ) /\ ( I e. ( 1 ... N ) /\ J e. ( 1 ... N ) ) ) -> ( I ( ( ( 1 ... N ) minMatR1 R ) ` M ) J ) e. B ) | 
						
							| 101 | 99 12 10 11 100 | syl22anc |  |-  ( ph -> ( I ( ( ( 1 ... N ) minMatR1 R ) ` M ) J ) e. B ) | 
						
							| 102 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 24 101 | madjusmdetlem3 |  |-  ( ph -> ( I ( subMat1 ` ( I ( ( ( 1 ... N ) minMatR1 R ) ` M ) J ) ) J ) = ( N ( subMat1 ` ( k e. ( 1 ... N ) , l e. ( 1 ... N ) |-> ( ( ( P o. `' S ) ` k ) ( I ( ( ( 1 ... N ) minMatR1 R ) ` M ) J ) ( ( Q o. `' T ) ` l ) ) ) ) N ) ) | 
						
							| 103 | 1 2 3 4 5 6 7 8 9 10 11 12 17 18 19 24 48 61 79 97 102 | madjusmdetlem1 |  |-  ( ph -> ( J ( K ` M ) I ) = ( ( Z ` ( ( ( pmSgn ` ( 1 ... N ) ) ` ( P o. `' S ) ) x. ( ( pmSgn ` ( 1 ... N ) ) ` ( Q o. `' T ) ) ) ) .x. ( E ` ( I ( subMat1 ` M ) J ) ) ) ) | 
						
							| 104 | 26 18 17 | psgnco |  |-  ( ( ( 1 ... N ) e. Fin /\ P e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) /\ `' S e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) -> ( ( pmSgn ` ( 1 ... N ) ) ` ( P o. `' S ) ) = ( ( ( pmSgn ` ( 1 ... N ) ) ` P ) x. ( ( pmSgn ` ( 1 ... N ) ) ` `' S ) ) ) | 
						
							| 105 | 38 28 43 104 | syl3anc |  |-  ( ph -> ( ( pmSgn ` ( 1 ... N ) ) ` ( P o. `' S ) ) = ( ( ( pmSgn ` ( 1 ... N ) ) ` P ) x. ( ( pmSgn ` ( 1 ... N ) ) ` `' S ) ) ) | 
						
							| 106 | 25 13 26 17 18 | psgnfzto1st |  |-  ( I e. ( 1 ... N ) -> ( ( pmSgn ` ( 1 ... N ) ) ` P ) = ( -u 1 ^ ( I + 1 ) ) ) | 
						
							| 107 | 10 106 | syl |  |-  ( ph -> ( ( pmSgn ` ( 1 ... N ) ) ` P ) = ( -u 1 ^ ( I + 1 ) ) ) | 
						
							| 108 | 26 18 17 | psgninv |  |-  ( ( ( 1 ... N ) e. Fin /\ S e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) -> ( ( pmSgn ` ( 1 ... N ) ) ` `' S ) = ( ( pmSgn ` ( 1 ... N ) ) ` S ) ) | 
						
							| 109 | 38 34 108 | syl2anc |  |-  ( ph -> ( ( pmSgn ` ( 1 ... N ) ) ` `' S ) = ( ( pmSgn ` ( 1 ... N ) ) ` S ) ) | 
						
							| 110 | 25 14 26 17 18 | psgnfzto1st |  |-  ( N e. ( 1 ... N ) -> ( ( pmSgn ` ( 1 ... N ) ) ` S ) = ( -u 1 ^ ( N + 1 ) ) ) | 
						
							| 111 | 32 110 | syl |  |-  ( ph -> ( ( pmSgn ` ( 1 ... N ) ) ` S ) = ( -u 1 ^ ( N + 1 ) ) ) | 
						
							| 112 | 109 111 | eqtrd |  |-  ( ph -> ( ( pmSgn ` ( 1 ... N ) ) ` `' S ) = ( -u 1 ^ ( N + 1 ) ) ) | 
						
							| 113 | 107 112 | oveq12d |  |-  ( ph -> ( ( ( pmSgn ` ( 1 ... N ) ) ` P ) x. ( ( pmSgn ` ( 1 ... N ) ) ` `' S ) ) = ( ( -u 1 ^ ( I + 1 ) ) x. ( -u 1 ^ ( N + 1 ) ) ) ) | 
						
							| 114 | 105 113 | eqtrd |  |-  ( ph -> ( ( pmSgn ` ( 1 ... N ) ) ` ( P o. `' S ) ) = ( ( -u 1 ^ ( I + 1 ) ) x. ( -u 1 ^ ( N + 1 ) ) ) ) | 
						
							| 115 | 26 18 17 | psgnco |  |-  ( ( ( 1 ... N ) e. Fin /\ Q e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) /\ `' T e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) -> ( ( pmSgn ` ( 1 ... N ) ) ` ( Q o. `' T ) ) = ( ( ( pmSgn ` ( 1 ... N ) ) ` Q ) x. ( ( pmSgn ` ( 1 ... N ) ) ` `' T ) ) ) | 
						
							| 116 | 38 50 57 115 | syl3anc |  |-  ( ph -> ( ( pmSgn ` ( 1 ... N ) ) ` ( Q o. `' T ) ) = ( ( ( pmSgn ` ( 1 ... N ) ) ` Q ) x. ( ( pmSgn ` ( 1 ... N ) ) ` `' T ) ) ) | 
						
							| 117 | 25 15 26 17 18 | psgnfzto1st |  |-  ( J e. ( 1 ... N ) -> ( ( pmSgn ` ( 1 ... N ) ) ` Q ) = ( -u 1 ^ ( J + 1 ) ) ) | 
						
							| 118 | 11 117 | syl |  |-  ( ph -> ( ( pmSgn ` ( 1 ... N ) ) ` Q ) = ( -u 1 ^ ( J + 1 ) ) ) | 
						
							| 119 | 26 18 17 | psgninv |  |-  ( ( ( 1 ... N ) e. Fin /\ T e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) -> ( ( pmSgn ` ( 1 ... N ) ) ` `' T ) = ( ( pmSgn ` ( 1 ... N ) ) ` T ) ) | 
						
							| 120 | 38 52 119 | syl2anc |  |-  ( ph -> ( ( pmSgn ` ( 1 ... N ) ) ` `' T ) = ( ( pmSgn ` ( 1 ... N ) ) ` T ) ) | 
						
							| 121 | 25 16 26 17 18 | psgnfzto1st |  |-  ( N e. ( 1 ... N ) -> ( ( pmSgn ` ( 1 ... N ) ) ` T ) = ( -u 1 ^ ( N + 1 ) ) ) | 
						
							| 122 | 32 121 | syl |  |-  ( ph -> ( ( pmSgn ` ( 1 ... N ) ) ` T ) = ( -u 1 ^ ( N + 1 ) ) ) | 
						
							| 123 | 120 122 | eqtrd |  |-  ( ph -> ( ( pmSgn ` ( 1 ... N ) ) ` `' T ) = ( -u 1 ^ ( N + 1 ) ) ) | 
						
							| 124 | 118 123 | oveq12d |  |-  ( ph -> ( ( ( pmSgn ` ( 1 ... N ) ) ` Q ) x. ( ( pmSgn ` ( 1 ... N ) ) ` `' T ) ) = ( ( -u 1 ^ ( J + 1 ) ) x. ( -u 1 ^ ( N + 1 ) ) ) ) | 
						
							| 125 | 116 124 | eqtrd |  |-  ( ph -> ( ( pmSgn ` ( 1 ... N ) ) ` ( Q o. `' T ) ) = ( ( -u 1 ^ ( J + 1 ) ) x. ( -u 1 ^ ( N + 1 ) ) ) ) | 
						
							| 126 | 114 125 | oveq12d |  |-  ( ph -> ( ( ( pmSgn ` ( 1 ... N ) ) ` ( P o. `' S ) ) x. ( ( pmSgn ` ( 1 ... N ) ) ` ( Q o. `' T ) ) ) = ( ( ( -u 1 ^ ( I + 1 ) ) x. ( -u 1 ^ ( N + 1 ) ) ) x. ( ( -u 1 ^ ( J + 1 ) ) x. ( -u 1 ^ ( N + 1 ) ) ) ) ) | 
						
							| 127 |  | 1cnd |  |-  ( ph -> 1 e. CC ) | 
						
							| 128 | 127 | negcld |  |-  ( ph -> -u 1 e. CC ) | 
						
							| 129 |  | fz1ssnn |  |-  ( 1 ... N ) C_ NN | 
						
							| 130 | 129 10 | sselid |  |-  ( ph -> I e. NN ) | 
						
							| 131 | 130 | nnnn0d |  |-  ( ph -> I e. NN0 ) | 
						
							| 132 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 133 | 132 | a1i |  |-  ( ph -> 1 e. NN0 ) | 
						
							| 134 | 131 133 | nn0addcld |  |-  ( ph -> ( I + 1 ) e. NN0 ) | 
						
							| 135 | 128 134 | expcld |  |-  ( ph -> ( -u 1 ^ ( I + 1 ) ) e. CC ) | 
						
							| 136 | 8 | nnnn0d |  |-  ( ph -> N e. NN0 ) | 
						
							| 137 | 136 133 | nn0addcld |  |-  ( ph -> ( N + 1 ) e. NN0 ) | 
						
							| 138 | 128 137 | expcld |  |-  ( ph -> ( -u 1 ^ ( N + 1 ) ) e. CC ) | 
						
							| 139 | 129 11 | sselid |  |-  ( ph -> J e. NN ) | 
						
							| 140 | 139 | nnnn0d |  |-  ( ph -> J e. NN0 ) | 
						
							| 141 | 140 133 | nn0addcld |  |-  ( ph -> ( J + 1 ) e. NN0 ) | 
						
							| 142 | 128 141 | expcld |  |-  ( ph -> ( -u 1 ^ ( J + 1 ) ) e. CC ) | 
						
							| 143 | 135 138 142 138 | mul4d |  |-  ( ph -> ( ( ( -u 1 ^ ( I + 1 ) ) x. ( -u 1 ^ ( N + 1 ) ) ) x. ( ( -u 1 ^ ( J + 1 ) ) x. ( -u 1 ^ ( N + 1 ) ) ) ) = ( ( ( -u 1 ^ ( I + 1 ) ) x. ( -u 1 ^ ( J + 1 ) ) ) x. ( ( -u 1 ^ ( N + 1 ) ) x. ( -u 1 ^ ( N + 1 ) ) ) ) ) | 
						
							| 144 | 128 141 134 | expaddd |  |-  ( ph -> ( -u 1 ^ ( ( I + 1 ) + ( J + 1 ) ) ) = ( ( -u 1 ^ ( I + 1 ) ) x. ( -u 1 ^ ( J + 1 ) ) ) ) | 
						
							| 145 | 130 | nncnd |  |-  ( ph -> I e. CC ) | 
						
							| 146 | 139 | nncnd |  |-  ( ph -> J e. CC ) | 
						
							| 147 | 145 127 146 127 | add4d |  |-  ( ph -> ( ( I + 1 ) + ( J + 1 ) ) = ( ( I + J ) + ( 1 + 1 ) ) ) | 
						
							| 148 |  | 1p1e2 |  |-  ( 1 + 1 ) = 2 | 
						
							| 149 | 148 | oveq2i |  |-  ( ( I + J ) + ( 1 + 1 ) ) = ( ( I + J ) + 2 ) | 
						
							| 150 | 147 149 | eqtrdi |  |-  ( ph -> ( ( I + 1 ) + ( J + 1 ) ) = ( ( I + J ) + 2 ) ) | 
						
							| 151 | 150 | oveq2d |  |-  ( ph -> ( -u 1 ^ ( ( I + 1 ) + ( J + 1 ) ) ) = ( -u 1 ^ ( ( I + J ) + 2 ) ) ) | 
						
							| 152 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 153 | 152 | a1i |  |-  ( ph -> 2 e. NN0 ) | 
						
							| 154 | 131 140 | nn0addcld |  |-  ( ph -> ( I + J ) e. NN0 ) | 
						
							| 155 | 128 153 154 | expaddd |  |-  ( ph -> ( -u 1 ^ ( ( I + J ) + 2 ) ) = ( ( -u 1 ^ ( I + J ) ) x. ( -u 1 ^ 2 ) ) ) | 
						
							| 156 |  | neg1sqe1 |  |-  ( -u 1 ^ 2 ) = 1 | 
						
							| 157 | 156 | oveq2i |  |-  ( ( -u 1 ^ ( I + J ) ) x. ( -u 1 ^ 2 ) ) = ( ( -u 1 ^ ( I + J ) ) x. 1 ) | 
						
							| 158 | 155 157 | eqtrdi |  |-  ( ph -> ( -u 1 ^ ( ( I + J ) + 2 ) ) = ( ( -u 1 ^ ( I + J ) ) x. 1 ) ) | 
						
							| 159 | 128 154 | expcld |  |-  ( ph -> ( -u 1 ^ ( I + J ) ) e. CC ) | 
						
							| 160 | 159 | mulridd |  |-  ( ph -> ( ( -u 1 ^ ( I + J ) ) x. 1 ) = ( -u 1 ^ ( I + J ) ) ) | 
						
							| 161 | 151 158 160 | 3eqtrd |  |-  ( ph -> ( -u 1 ^ ( ( I + 1 ) + ( J + 1 ) ) ) = ( -u 1 ^ ( I + J ) ) ) | 
						
							| 162 | 144 161 | eqtr3d |  |-  ( ph -> ( ( -u 1 ^ ( I + 1 ) ) x. ( -u 1 ^ ( J + 1 ) ) ) = ( -u 1 ^ ( I + J ) ) ) | 
						
							| 163 | 137 | nn0zd |  |-  ( ph -> ( N + 1 ) e. ZZ ) | 
						
							| 164 |  | m1expcl2 |  |-  ( ( N + 1 ) e. ZZ -> ( -u 1 ^ ( N + 1 ) ) e. { -u 1 , 1 } ) | 
						
							| 165 |  | 1neg1t1neg1 |  |-  ( ( -u 1 ^ ( N + 1 ) ) e. { -u 1 , 1 } -> ( ( -u 1 ^ ( N + 1 ) ) x. ( -u 1 ^ ( N + 1 ) ) ) = 1 ) | 
						
							| 166 | 163 164 165 | 3syl |  |-  ( ph -> ( ( -u 1 ^ ( N + 1 ) ) x. ( -u 1 ^ ( N + 1 ) ) ) = 1 ) | 
						
							| 167 | 162 166 | oveq12d |  |-  ( ph -> ( ( ( -u 1 ^ ( I + 1 ) ) x. ( -u 1 ^ ( J + 1 ) ) ) x. ( ( -u 1 ^ ( N + 1 ) ) x. ( -u 1 ^ ( N + 1 ) ) ) ) = ( ( -u 1 ^ ( I + J ) ) x. 1 ) ) | 
						
							| 168 | 143 167 160 | 3eqtrd |  |-  ( ph -> ( ( ( -u 1 ^ ( I + 1 ) ) x. ( -u 1 ^ ( N + 1 ) ) ) x. ( ( -u 1 ^ ( J + 1 ) ) x. ( -u 1 ^ ( N + 1 ) ) ) ) = ( -u 1 ^ ( I + J ) ) ) | 
						
							| 169 | 126 168 | eqtrd |  |-  ( ph -> ( ( ( pmSgn ` ( 1 ... N ) ) ` ( P o. `' S ) ) x. ( ( pmSgn ` ( 1 ... N ) ) ` ( Q o. `' T ) ) ) = ( -u 1 ^ ( I + J ) ) ) | 
						
							| 170 | 169 | fveq2d |  |-  ( ph -> ( Z ` ( ( ( pmSgn ` ( 1 ... N ) ) ` ( P o. `' S ) ) x. ( ( pmSgn ` ( 1 ... N ) ) ` ( Q o. `' T ) ) ) ) = ( Z ` ( -u 1 ^ ( I + J ) ) ) ) | 
						
							| 171 | 170 | oveq1d |  |-  ( ph -> ( ( Z ` ( ( ( pmSgn ` ( 1 ... N ) ) ` ( P o. `' S ) ) x. ( ( pmSgn ` ( 1 ... N ) ) ` ( Q o. `' T ) ) ) ) .x. ( E ` ( I ( subMat1 ` M ) J ) ) ) = ( ( Z ` ( -u 1 ^ ( I + J ) ) ) .x. ( E ` ( I ( subMat1 ` M ) J ) ) ) ) | 
						
							| 172 | 103 171 | eqtrd |  |-  ( ph -> ( J ( K ` M ) I ) = ( ( Z ` ( -u 1 ^ ( I + J ) ) ) .x. ( E ` ( I ( subMat1 ` M ) J ) ) ) ) |