| Step |
Hyp |
Ref |
Expression |
| 1 |
|
madjusmdet.b |
|- B = ( Base ` A ) |
| 2 |
|
madjusmdet.a |
|- A = ( ( 1 ... N ) Mat R ) |
| 3 |
|
madjusmdet.d |
|- D = ( ( 1 ... N ) maDet R ) |
| 4 |
|
madjusmdet.k |
|- K = ( ( 1 ... N ) maAdju R ) |
| 5 |
|
madjusmdet.t |
|- .x. = ( .r ` R ) |
| 6 |
|
madjusmdet.z |
|- Z = ( ZRHom ` R ) |
| 7 |
|
madjusmdet.e |
|- E = ( ( 1 ... ( N - 1 ) ) maDet R ) |
| 8 |
|
madjusmdet.n |
|- ( ph -> N e. NN ) |
| 9 |
|
madjusmdet.r |
|- ( ph -> R e. CRing ) |
| 10 |
|
madjusmdet.i |
|- ( ph -> I e. ( 1 ... N ) ) |
| 11 |
|
madjusmdet.j |
|- ( ph -> J e. ( 1 ... N ) ) |
| 12 |
|
madjusmdet.m |
|- ( ph -> M e. B ) |
| 13 |
|
madjusmdetlem2.p |
|- P = ( i e. ( 1 ... N ) |-> if ( i = 1 , I , if ( i <_ I , ( i - 1 ) , i ) ) ) |
| 14 |
|
madjusmdetlem2.s |
|- S = ( i e. ( 1 ... N ) |-> if ( i = 1 , N , if ( i <_ N , ( i - 1 ) , i ) ) ) |
| 15 |
|
madjusmdetlem4.q |
|- Q = ( j e. ( 1 ... N ) |-> if ( j = 1 , J , if ( j <_ J , ( j - 1 ) , j ) ) ) |
| 16 |
|
madjusmdetlem4.t |
|- T = ( j e. ( 1 ... N ) |-> if ( j = 1 , N , if ( j <_ N , ( j - 1 ) , j ) ) ) |
| 17 |
|
eqid |
|- ( Base ` ( SymGrp ` ( 1 ... N ) ) ) = ( Base ` ( SymGrp ` ( 1 ... N ) ) ) |
| 18 |
|
eqid |
|- ( pmSgn ` ( 1 ... N ) ) = ( pmSgn ` ( 1 ... N ) ) |
| 19 |
|
eqid |
|- ( I ( ( ( 1 ... N ) minMatR1 R ) ` M ) J ) = ( I ( ( ( 1 ... N ) minMatR1 R ) ` M ) J ) |
| 20 |
|
fveq2 |
|- ( k = i -> ( ( P o. `' S ) ` k ) = ( ( P o. `' S ) ` i ) ) |
| 21 |
20
|
oveq1d |
|- ( k = i -> ( ( ( P o. `' S ) ` k ) ( I ( ( ( 1 ... N ) minMatR1 R ) ` M ) J ) ( ( Q o. `' T ) ` l ) ) = ( ( ( P o. `' S ) ` i ) ( I ( ( ( 1 ... N ) minMatR1 R ) ` M ) J ) ( ( Q o. `' T ) ` l ) ) ) |
| 22 |
|
fveq2 |
|- ( l = j -> ( ( Q o. `' T ) ` l ) = ( ( Q o. `' T ) ` j ) ) |
| 23 |
22
|
oveq2d |
|- ( l = j -> ( ( ( P o. `' S ) ` i ) ( I ( ( ( 1 ... N ) minMatR1 R ) ` M ) J ) ( ( Q o. `' T ) ` l ) ) = ( ( ( P o. `' S ) ` i ) ( I ( ( ( 1 ... N ) minMatR1 R ) ` M ) J ) ( ( Q o. `' T ) ` j ) ) ) |
| 24 |
21 23
|
cbvmpov |
|- ( k e. ( 1 ... N ) , l e. ( 1 ... N ) |-> ( ( ( P o. `' S ) ` k ) ( I ( ( ( 1 ... N ) minMatR1 R ) ` M ) J ) ( ( Q o. `' T ) ` l ) ) ) = ( i e. ( 1 ... N ) , j e. ( 1 ... N ) |-> ( ( ( P o. `' S ) ` i ) ( I ( ( ( 1 ... N ) minMatR1 R ) ` M ) J ) ( ( Q o. `' T ) ` j ) ) ) |
| 25 |
|
eqid |
|- ( 1 ... N ) = ( 1 ... N ) |
| 26 |
|
eqid |
|- ( SymGrp ` ( 1 ... N ) ) = ( SymGrp ` ( 1 ... N ) ) |
| 27 |
25 13 26 17
|
fzto1st |
|- ( I e. ( 1 ... N ) -> P e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) |
| 28 |
10 27
|
syl |
|- ( ph -> P e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) |
| 29 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 30 |
8 29
|
eleqtrdi |
|- ( ph -> N e. ( ZZ>= ` 1 ) ) |
| 31 |
|
eluzfz2 |
|- ( N e. ( ZZ>= ` 1 ) -> N e. ( 1 ... N ) ) |
| 32 |
30 31
|
syl |
|- ( ph -> N e. ( 1 ... N ) ) |
| 33 |
25 14 26 17
|
fzto1st |
|- ( N e. ( 1 ... N ) -> S e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) |
| 34 |
32 33
|
syl |
|- ( ph -> S e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) |
| 35 |
|
eqid |
|- ( invg ` ( SymGrp ` ( 1 ... N ) ) ) = ( invg ` ( SymGrp ` ( 1 ... N ) ) ) |
| 36 |
26 17 35
|
symginv |
|- ( S e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) -> ( ( invg ` ( SymGrp ` ( 1 ... N ) ) ) ` S ) = `' S ) |
| 37 |
34 36
|
syl |
|- ( ph -> ( ( invg ` ( SymGrp ` ( 1 ... N ) ) ) ` S ) = `' S ) |
| 38 |
|
fzfid |
|- ( ph -> ( 1 ... N ) e. Fin ) |
| 39 |
26
|
symggrp |
|- ( ( 1 ... N ) e. Fin -> ( SymGrp ` ( 1 ... N ) ) e. Grp ) |
| 40 |
38 39
|
syl |
|- ( ph -> ( SymGrp ` ( 1 ... N ) ) e. Grp ) |
| 41 |
17 35
|
grpinvcl |
|- ( ( ( SymGrp ` ( 1 ... N ) ) e. Grp /\ S e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) -> ( ( invg ` ( SymGrp ` ( 1 ... N ) ) ) ` S ) e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) |
| 42 |
40 34 41
|
syl2anc |
|- ( ph -> ( ( invg ` ( SymGrp ` ( 1 ... N ) ) ) ` S ) e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) |
| 43 |
37 42
|
eqeltrrd |
|- ( ph -> `' S e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) |
| 44 |
|
eqid |
|- ( +g ` ( SymGrp ` ( 1 ... N ) ) ) = ( +g ` ( SymGrp ` ( 1 ... N ) ) ) |
| 45 |
26 17 44
|
symgov |
|- ( ( P e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) /\ `' S e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) -> ( P ( +g ` ( SymGrp ` ( 1 ... N ) ) ) `' S ) = ( P o. `' S ) ) |
| 46 |
26 17 44
|
symgcl |
|- ( ( P e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) /\ `' S e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) -> ( P ( +g ` ( SymGrp ` ( 1 ... N ) ) ) `' S ) e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) |
| 47 |
45 46
|
eqeltrrd |
|- ( ( P e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) /\ `' S e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) -> ( P o. `' S ) e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) |
| 48 |
28 43 47
|
syl2anc |
|- ( ph -> ( P o. `' S ) e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) |
| 49 |
25 15 26 17
|
fzto1st |
|- ( J e. ( 1 ... N ) -> Q e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) |
| 50 |
11 49
|
syl |
|- ( ph -> Q e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) |
| 51 |
25 16 26 17
|
fzto1st |
|- ( N e. ( 1 ... N ) -> T e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) |
| 52 |
32 51
|
syl |
|- ( ph -> T e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) |
| 53 |
26 17 35
|
symginv |
|- ( T e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) -> ( ( invg ` ( SymGrp ` ( 1 ... N ) ) ) ` T ) = `' T ) |
| 54 |
52 53
|
syl |
|- ( ph -> ( ( invg ` ( SymGrp ` ( 1 ... N ) ) ) ` T ) = `' T ) |
| 55 |
17 35
|
grpinvcl |
|- ( ( ( SymGrp ` ( 1 ... N ) ) e. Grp /\ T e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) -> ( ( invg ` ( SymGrp ` ( 1 ... N ) ) ) ` T ) e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) |
| 56 |
40 52 55
|
syl2anc |
|- ( ph -> ( ( invg ` ( SymGrp ` ( 1 ... N ) ) ) ` T ) e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) |
| 57 |
54 56
|
eqeltrrd |
|- ( ph -> `' T e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) |
| 58 |
26 17 44
|
symgov |
|- ( ( Q e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) /\ `' T e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) -> ( Q ( +g ` ( SymGrp ` ( 1 ... N ) ) ) `' T ) = ( Q o. `' T ) ) |
| 59 |
26 17 44
|
symgcl |
|- ( ( Q e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) /\ `' T e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) -> ( Q ( +g ` ( SymGrp ` ( 1 ... N ) ) ) `' T ) e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) |
| 60 |
58 59
|
eqeltrrd |
|- ( ( Q e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) /\ `' T e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) -> ( Q o. `' T ) e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) |
| 61 |
50 57 60
|
syl2anc |
|- ( ph -> ( Q o. `' T ) e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) |
| 62 |
26 17
|
symgbasf1o |
|- ( S e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) -> S : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) |
| 63 |
34 62
|
syl |
|- ( ph -> S : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) |
| 64 |
|
f1of1 |
|- ( S : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> S : ( 1 ... N ) -1-1-> ( 1 ... N ) ) |
| 65 |
|
df-f1 |
|- ( S : ( 1 ... N ) -1-1-> ( 1 ... N ) <-> ( S : ( 1 ... N ) --> ( 1 ... N ) /\ Fun `' S ) ) |
| 66 |
65
|
simprbi |
|- ( S : ( 1 ... N ) -1-1-> ( 1 ... N ) -> Fun `' S ) |
| 67 |
63 64 66
|
3syl |
|- ( ph -> Fun `' S ) |
| 68 |
|
f1ocnv |
|- ( S : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> `' S : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) |
| 69 |
|
f1odm |
|- ( `' S : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> dom `' S = ( 1 ... N ) ) |
| 70 |
63 68 69
|
3syl |
|- ( ph -> dom `' S = ( 1 ... N ) ) |
| 71 |
32 70
|
eleqtrrd |
|- ( ph -> N e. dom `' S ) |
| 72 |
|
fvco |
|- ( ( Fun `' S /\ N e. dom `' S ) -> ( ( P o. `' S ) ` N ) = ( P ` ( `' S ` N ) ) ) |
| 73 |
67 71 72
|
syl2anc |
|- ( ph -> ( ( P o. `' S ) ` N ) = ( P ` ( `' S ` N ) ) ) |
| 74 |
25 14 26 17
|
fzto1stinvn |
|- ( N e. ( 1 ... N ) -> ( `' S ` N ) = 1 ) |
| 75 |
32 74
|
syl |
|- ( ph -> ( `' S ` N ) = 1 ) |
| 76 |
75
|
fveq2d |
|- ( ph -> ( P ` ( `' S ` N ) ) = ( P ` 1 ) ) |
| 77 |
25 13
|
fzto1stfv1 |
|- ( I e. ( 1 ... N ) -> ( P ` 1 ) = I ) |
| 78 |
10 77
|
syl |
|- ( ph -> ( P ` 1 ) = I ) |
| 79 |
73 76 78
|
3eqtrd |
|- ( ph -> ( ( P o. `' S ) ` N ) = I ) |
| 80 |
26 17
|
symgbasf1o |
|- ( T e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) -> T : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) |
| 81 |
52 80
|
syl |
|- ( ph -> T : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) |
| 82 |
|
f1of1 |
|- ( T : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> T : ( 1 ... N ) -1-1-> ( 1 ... N ) ) |
| 83 |
|
df-f1 |
|- ( T : ( 1 ... N ) -1-1-> ( 1 ... N ) <-> ( T : ( 1 ... N ) --> ( 1 ... N ) /\ Fun `' T ) ) |
| 84 |
83
|
simprbi |
|- ( T : ( 1 ... N ) -1-1-> ( 1 ... N ) -> Fun `' T ) |
| 85 |
81 82 84
|
3syl |
|- ( ph -> Fun `' T ) |
| 86 |
|
f1ocnv |
|- ( T : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> `' T : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) |
| 87 |
|
f1odm |
|- ( `' T : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> dom `' T = ( 1 ... N ) ) |
| 88 |
81 86 87
|
3syl |
|- ( ph -> dom `' T = ( 1 ... N ) ) |
| 89 |
32 88
|
eleqtrrd |
|- ( ph -> N e. dom `' T ) |
| 90 |
|
fvco |
|- ( ( Fun `' T /\ N e. dom `' T ) -> ( ( Q o. `' T ) ` N ) = ( Q ` ( `' T ` N ) ) ) |
| 91 |
85 89 90
|
syl2anc |
|- ( ph -> ( ( Q o. `' T ) ` N ) = ( Q ` ( `' T ` N ) ) ) |
| 92 |
25 16 26 17
|
fzto1stinvn |
|- ( N e. ( 1 ... N ) -> ( `' T ` N ) = 1 ) |
| 93 |
32 92
|
syl |
|- ( ph -> ( `' T ` N ) = 1 ) |
| 94 |
93
|
fveq2d |
|- ( ph -> ( Q ` ( `' T ` N ) ) = ( Q ` 1 ) ) |
| 95 |
25 15
|
fzto1stfv1 |
|- ( J e. ( 1 ... N ) -> ( Q ` 1 ) = J ) |
| 96 |
11 95
|
syl |
|- ( ph -> ( Q ` 1 ) = J ) |
| 97 |
91 94 96
|
3eqtrd |
|- ( ph -> ( ( Q o. `' T ) ` N ) = J ) |
| 98 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
| 99 |
9 98
|
syl |
|- ( ph -> R e. Ring ) |
| 100 |
2 1
|
minmar1cl |
|- ( ( ( R e. Ring /\ M e. B ) /\ ( I e. ( 1 ... N ) /\ J e. ( 1 ... N ) ) ) -> ( I ( ( ( 1 ... N ) minMatR1 R ) ` M ) J ) e. B ) |
| 101 |
99 12 10 11 100
|
syl22anc |
|- ( ph -> ( I ( ( ( 1 ... N ) minMatR1 R ) ` M ) J ) e. B ) |
| 102 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 24 101
|
madjusmdetlem3 |
|- ( ph -> ( I ( subMat1 ` ( I ( ( ( 1 ... N ) minMatR1 R ) ` M ) J ) ) J ) = ( N ( subMat1 ` ( k e. ( 1 ... N ) , l e. ( 1 ... N ) |-> ( ( ( P o. `' S ) ` k ) ( I ( ( ( 1 ... N ) minMatR1 R ) ` M ) J ) ( ( Q o. `' T ) ` l ) ) ) ) N ) ) |
| 103 |
1 2 3 4 5 6 7 8 9 10 11 12 17 18 19 24 48 61 79 97 102
|
madjusmdetlem1 |
|- ( ph -> ( J ( K ` M ) I ) = ( ( Z ` ( ( ( pmSgn ` ( 1 ... N ) ) ` ( P o. `' S ) ) x. ( ( pmSgn ` ( 1 ... N ) ) ` ( Q o. `' T ) ) ) ) .x. ( E ` ( I ( subMat1 ` M ) J ) ) ) ) |
| 104 |
26 18 17
|
psgnco |
|- ( ( ( 1 ... N ) e. Fin /\ P e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) /\ `' S e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) -> ( ( pmSgn ` ( 1 ... N ) ) ` ( P o. `' S ) ) = ( ( ( pmSgn ` ( 1 ... N ) ) ` P ) x. ( ( pmSgn ` ( 1 ... N ) ) ` `' S ) ) ) |
| 105 |
38 28 43 104
|
syl3anc |
|- ( ph -> ( ( pmSgn ` ( 1 ... N ) ) ` ( P o. `' S ) ) = ( ( ( pmSgn ` ( 1 ... N ) ) ` P ) x. ( ( pmSgn ` ( 1 ... N ) ) ` `' S ) ) ) |
| 106 |
25 13 26 17 18
|
psgnfzto1st |
|- ( I e. ( 1 ... N ) -> ( ( pmSgn ` ( 1 ... N ) ) ` P ) = ( -u 1 ^ ( I + 1 ) ) ) |
| 107 |
10 106
|
syl |
|- ( ph -> ( ( pmSgn ` ( 1 ... N ) ) ` P ) = ( -u 1 ^ ( I + 1 ) ) ) |
| 108 |
26 18 17
|
psgninv |
|- ( ( ( 1 ... N ) e. Fin /\ S e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) -> ( ( pmSgn ` ( 1 ... N ) ) ` `' S ) = ( ( pmSgn ` ( 1 ... N ) ) ` S ) ) |
| 109 |
38 34 108
|
syl2anc |
|- ( ph -> ( ( pmSgn ` ( 1 ... N ) ) ` `' S ) = ( ( pmSgn ` ( 1 ... N ) ) ` S ) ) |
| 110 |
25 14 26 17 18
|
psgnfzto1st |
|- ( N e. ( 1 ... N ) -> ( ( pmSgn ` ( 1 ... N ) ) ` S ) = ( -u 1 ^ ( N + 1 ) ) ) |
| 111 |
32 110
|
syl |
|- ( ph -> ( ( pmSgn ` ( 1 ... N ) ) ` S ) = ( -u 1 ^ ( N + 1 ) ) ) |
| 112 |
109 111
|
eqtrd |
|- ( ph -> ( ( pmSgn ` ( 1 ... N ) ) ` `' S ) = ( -u 1 ^ ( N + 1 ) ) ) |
| 113 |
107 112
|
oveq12d |
|- ( ph -> ( ( ( pmSgn ` ( 1 ... N ) ) ` P ) x. ( ( pmSgn ` ( 1 ... N ) ) ` `' S ) ) = ( ( -u 1 ^ ( I + 1 ) ) x. ( -u 1 ^ ( N + 1 ) ) ) ) |
| 114 |
105 113
|
eqtrd |
|- ( ph -> ( ( pmSgn ` ( 1 ... N ) ) ` ( P o. `' S ) ) = ( ( -u 1 ^ ( I + 1 ) ) x. ( -u 1 ^ ( N + 1 ) ) ) ) |
| 115 |
26 18 17
|
psgnco |
|- ( ( ( 1 ... N ) e. Fin /\ Q e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) /\ `' T e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) -> ( ( pmSgn ` ( 1 ... N ) ) ` ( Q o. `' T ) ) = ( ( ( pmSgn ` ( 1 ... N ) ) ` Q ) x. ( ( pmSgn ` ( 1 ... N ) ) ` `' T ) ) ) |
| 116 |
38 50 57 115
|
syl3anc |
|- ( ph -> ( ( pmSgn ` ( 1 ... N ) ) ` ( Q o. `' T ) ) = ( ( ( pmSgn ` ( 1 ... N ) ) ` Q ) x. ( ( pmSgn ` ( 1 ... N ) ) ` `' T ) ) ) |
| 117 |
25 15 26 17 18
|
psgnfzto1st |
|- ( J e. ( 1 ... N ) -> ( ( pmSgn ` ( 1 ... N ) ) ` Q ) = ( -u 1 ^ ( J + 1 ) ) ) |
| 118 |
11 117
|
syl |
|- ( ph -> ( ( pmSgn ` ( 1 ... N ) ) ` Q ) = ( -u 1 ^ ( J + 1 ) ) ) |
| 119 |
26 18 17
|
psgninv |
|- ( ( ( 1 ... N ) e. Fin /\ T e. ( Base ` ( SymGrp ` ( 1 ... N ) ) ) ) -> ( ( pmSgn ` ( 1 ... N ) ) ` `' T ) = ( ( pmSgn ` ( 1 ... N ) ) ` T ) ) |
| 120 |
38 52 119
|
syl2anc |
|- ( ph -> ( ( pmSgn ` ( 1 ... N ) ) ` `' T ) = ( ( pmSgn ` ( 1 ... N ) ) ` T ) ) |
| 121 |
25 16 26 17 18
|
psgnfzto1st |
|- ( N e. ( 1 ... N ) -> ( ( pmSgn ` ( 1 ... N ) ) ` T ) = ( -u 1 ^ ( N + 1 ) ) ) |
| 122 |
32 121
|
syl |
|- ( ph -> ( ( pmSgn ` ( 1 ... N ) ) ` T ) = ( -u 1 ^ ( N + 1 ) ) ) |
| 123 |
120 122
|
eqtrd |
|- ( ph -> ( ( pmSgn ` ( 1 ... N ) ) ` `' T ) = ( -u 1 ^ ( N + 1 ) ) ) |
| 124 |
118 123
|
oveq12d |
|- ( ph -> ( ( ( pmSgn ` ( 1 ... N ) ) ` Q ) x. ( ( pmSgn ` ( 1 ... N ) ) ` `' T ) ) = ( ( -u 1 ^ ( J + 1 ) ) x. ( -u 1 ^ ( N + 1 ) ) ) ) |
| 125 |
116 124
|
eqtrd |
|- ( ph -> ( ( pmSgn ` ( 1 ... N ) ) ` ( Q o. `' T ) ) = ( ( -u 1 ^ ( J + 1 ) ) x. ( -u 1 ^ ( N + 1 ) ) ) ) |
| 126 |
114 125
|
oveq12d |
|- ( ph -> ( ( ( pmSgn ` ( 1 ... N ) ) ` ( P o. `' S ) ) x. ( ( pmSgn ` ( 1 ... N ) ) ` ( Q o. `' T ) ) ) = ( ( ( -u 1 ^ ( I + 1 ) ) x. ( -u 1 ^ ( N + 1 ) ) ) x. ( ( -u 1 ^ ( J + 1 ) ) x. ( -u 1 ^ ( N + 1 ) ) ) ) ) |
| 127 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
| 128 |
127
|
negcld |
|- ( ph -> -u 1 e. CC ) |
| 129 |
|
fz1ssnn |
|- ( 1 ... N ) C_ NN |
| 130 |
129 10
|
sselid |
|- ( ph -> I e. NN ) |
| 131 |
130
|
nnnn0d |
|- ( ph -> I e. NN0 ) |
| 132 |
|
1nn0 |
|- 1 e. NN0 |
| 133 |
132
|
a1i |
|- ( ph -> 1 e. NN0 ) |
| 134 |
131 133
|
nn0addcld |
|- ( ph -> ( I + 1 ) e. NN0 ) |
| 135 |
128 134
|
expcld |
|- ( ph -> ( -u 1 ^ ( I + 1 ) ) e. CC ) |
| 136 |
8
|
nnnn0d |
|- ( ph -> N e. NN0 ) |
| 137 |
136 133
|
nn0addcld |
|- ( ph -> ( N + 1 ) e. NN0 ) |
| 138 |
128 137
|
expcld |
|- ( ph -> ( -u 1 ^ ( N + 1 ) ) e. CC ) |
| 139 |
129 11
|
sselid |
|- ( ph -> J e. NN ) |
| 140 |
139
|
nnnn0d |
|- ( ph -> J e. NN0 ) |
| 141 |
140 133
|
nn0addcld |
|- ( ph -> ( J + 1 ) e. NN0 ) |
| 142 |
128 141
|
expcld |
|- ( ph -> ( -u 1 ^ ( J + 1 ) ) e. CC ) |
| 143 |
135 138 142 138
|
mul4d |
|- ( ph -> ( ( ( -u 1 ^ ( I + 1 ) ) x. ( -u 1 ^ ( N + 1 ) ) ) x. ( ( -u 1 ^ ( J + 1 ) ) x. ( -u 1 ^ ( N + 1 ) ) ) ) = ( ( ( -u 1 ^ ( I + 1 ) ) x. ( -u 1 ^ ( J + 1 ) ) ) x. ( ( -u 1 ^ ( N + 1 ) ) x. ( -u 1 ^ ( N + 1 ) ) ) ) ) |
| 144 |
128 141 134
|
expaddd |
|- ( ph -> ( -u 1 ^ ( ( I + 1 ) + ( J + 1 ) ) ) = ( ( -u 1 ^ ( I + 1 ) ) x. ( -u 1 ^ ( J + 1 ) ) ) ) |
| 145 |
130
|
nncnd |
|- ( ph -> I e. CC ) |
| 146 |
139
|
nncnd |
|- ( ph -> J e. CC ) |
| 147 |
145 127 146 127
|
add4d |
|- ( ph -> ( ( I + 1 ) + ( J + 1 ) ) = ( ( I + J ) + ( 1 + 1 ) ) ) |
| 148 |
|
1p1e2 |
|- ( 1 + 1 ) = 2 |
| 149 |
148
|
oveq2i |
|- ( ( I + J ) + ( 1 + 1 ) ) = ( ( I + J ) + 2 ) |
| 150 |
147 149
|
eqtrdi |
|- ( ph -> ( ( I + 1 ) + ( J + 1 ) ) = ( ( I + J ) + 2 ) ) |
| 151 |
150
|
oveq2d |
|- ( ph -> ( -u 1 ^ ( ( I + 1 ) + ( J + 1 ) ) ) = ( -u 1 ^ ( ( I + J ) + 2 ) ) ) |
| 152 |
|
2nn0 |
|- 2 e. NN0 |
| 153 |
152
|
a1i |
|- ( ph -> 2 e. NN0 ) |
| 154 |
131 140
|
nn0addcld |
|- ( ph -> ( I + J ) e. NN0 ) |
| 155 |
128 153 154
|
expaddd |
|- ( ph -> ( -u 1 ^ ( ( I + J ) + 2 ) ) = ( ( -u 1 ^ ( I + J ) ) x. ( -u 1 ^ 2 ) ) ) |
| 156 |
|
neg1sqe1 |
|- ( -u 1 ^ 2 ) = 1 |
| 157 |
156
|
oveq2i |
|- ( ( -u 1 ^ ( I + J ) ) x. ( -u 1 ^ 2 ) ) = ( ( -u 1 ^ ( I + J ) ) x. 1 ) |
| 158 |
155 157
|
eqtrdi |
|- ( ph -> ( -u 1 ^ ( ( I + J ) + 2 ) ) = ( ( -u 1 ^ ( I + J ) ) x. 1 ) ) |
| 159 |
128 154
|
expcld |
|- ( ph -> ( -u 1 ^ ( I + J ) ) e. CC ) |
| 160 |
159
|
mulridd |
|- ( ph -> ( ( -u 1 ^ ( I + J ) ) x. 1 ) = ( -u 1 ^ ( I + J ) ) ) |
| 161 |
151 158 160
|
3eqtrd |
|- ( ph -> ( -u 1 ^ ( ( I + 1 ) + ( J + 1 ) ) ) = ( -u 1 ^ ( I + J ) ) ) |
| 162 |
144 161
|
eqtr3d |
|- ( ph -> ( ( -u 1 ^ ( I + 1 ) ) x. ( -u 1 ^ ( J + 1 ) ) ) = ( -u 1 ^ ( I + J ) ) ) |
| 163 |
137
|
nn0zd |
|- ( ph -> ( N + 1 ) e. ZZ ) |
| 164 |
|
m1expcl2 |
|- ( ( N + 1 ) e. ZZ -> ( -u 1 ^ ( N + 1 ) ) e. { -u 1 , 1 } ) |
| 165 |
|
1neg1t1neg1 |
|- ( ( -u 1 ^ ( N + 1 ) ) e. { -u 1 , 1 } -> ( ( -u 1 ^ ( N + 1 ) ) x. ( -u 1 ^ ( N + 1 ) ) ) = 1 ) |
| 166 |
163 164 165
|
3syl |
|- ( ph -> ( ( -u 1 ^ ( N + 1 ) ) x. ( -u 1 ^ ( N + 1 ) ) ) = 1 ) |
| 167 |
162 166
|
oveq12d |
|- ( ph -> ( ( ( -u 1 ^ ( I + 1 ) ) x. ( -u 1 ^ ( J + 1 ) ) ) x. ( ( -u 1 ^ ( N + 1 ) ) x. ( -u 1 ^ ( N + 1 ) ) ) ) = ( ( -u 1 ^ ( I + J ) ) x. 1 ) ) |
| 168 |
143 167 160
|
3eqtrd |
|- ( ph -> ( ( ( -u 1 ^ ( I + 1 ) ) x. ( -u 1 ^ ( N + 1 ) ) ) x. ( ( -u 1 ^ ( J + 1 ) ) x. ( -u 1 ^ ( N + 1 ) ) ) ) = ( -u 1 ^ ( I + J ) ) ) |
| 169 |
126 168
|
eqtrd |
|- ( ph -> ( ( ( pmSgn ` ( 1 ... N ) ) ` ( P o. `' S ) ) x. ( ( pmSgn ` ( 1 ... N ) ) ` ( Q o. `' T ) ) ) = ( -u 1 ^ ( I + J ) ) ) |
| 170 |
169
|
fveq2d |
|- ( ph -> ( Z ` ( ( ( pmSgn ` ( 1 ... N ) ) ` ( P o. `' S ) ) x. ( ( pmSgn ` ( 1 ... N ) ) ` ( Q o. `' T ) ) ) ) = ( Z ` ( -u 1 ^ ( I + J ) ) ) ) |
| 171 |
170
|
oveq1d |
|- ( ph -> ( ( Z ` ( ( ( pmSgn ` ( 1 ... N ) ) ` ( P o. `' S ) ) x. ( ( pmSgn ` ( 1 ... N ) ) ` ( Q o. `' T ) ) ) ) .x. ( E ` ( I ( subMat1 ` M ) J ) ) ) = ( ( Z ` ( -u 1 ^ ( I + J ) ) ) .x. ( E ` ( I ( subMat1 ` M ) J ) ) ) ) |
| 172 |
103 171
|
eqtrd |
|- ( ph -> ( J ( K ` M ) I ) = ( ( Z ` ( -u 1 ^ ( I + J ) ) ) .x. ( E ` ( I ( subMat1 ` M ) J ) ) ) ) |