| Step | Hyp | Ref | Expression | 
						
							| 1 |  | madjusmdet.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 2 |  | madjusmdet.a | ⊢ 𝐴  =  ( ( 1 ... 𝑁 )  Mat  𝑅 ) | 
						
							| 3 |  | madjusmdet.d | ⊢ 𝐷  =  ( ( 1 ... 𝑁 )  maDet  𝑅 ) | 
						
							| 4 |  | madjusmdet.k | ⊢ 𝐾  =  ( ( 1 ... 𝑁 )  maAdju  𝑅 ) | 
						
							| 5 |  | madjusmdet.t | ⊢  ·   =  ( .r ‘ 𝑅 ) | 
						
							| 6 |  | madjusmdet.z | ⊢ 𝑍  =  ( ℤRHom ‘ 𝑅 ) | 
						
							| 7 |  | madjusmdet.e | ⊢ 𝐸  =  ( ( 1 ... ( 𝑁  −  1 ) )  maDet  𝑅 ) | 
						
							| 8 |  | madjusmdet.n | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 9 |  | madjusmdet.r | ⊢ ( 𝜑  →  𝑅  ∈  CRing ) | 
						
							| 10 |  | madjusmdet.i | ⊢ ( 𝜑  →  𝐼  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 11 |  | madjusmdet.j | ⊢ ( 𝜑  →  𝐽  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 12 |  | madjusmdet.m | ⊢ ( 𝜑  →  𝑀  ∈  𝐵 ) | 
						
							| 13 |  | madjusmdetlem2.p | ⊢ 𝑃  =  ( 𝑖  ∈  ( 1 ... 𝑁 )  ↦  if ( 𝑖  =  1 ,  𝐼 ,  if ( 𝑖  ≤  𝐼 ,  ( 𝑖  −  1 ) ,  𝑖 ) ) ) | 
						
							| 14 |  | madjusmdetlem2.s | ⊢ 𝑆  =  ( 𝑖  ∈  ( 1 ... 𝑁 )  ↦  if ( 𝑖  =  1 ,  𝑁 ,  if ( 𝑖  ≤  𝑁 ,  ( 𝑖  −  1 ) ,  𝑖 ) ) ) | 
						
							| 15 |  | madjusmdetlem4.q | ⊢ 𝑄  =  ( 𝑗  ∈  ( 1 ... 𝑁 )  ↦  if ( 𝑗  =  1 ,  𝐽 ,  if ( 𝑗  ≤  𝐽 ,  ( 𝑗  −  1 ) ,  𝑗 ) ) ) | 
						
							| 16 |  | madjusmdetlem4.t | ⊢ 𝑇  =  ( 𝑗  ∈  ( 1 ... 𝑁 )  ↦  if ( 𝑗  =  1 ,  𝑁 ,  if ( 𝑗  ≤  𝑁 ,  ( 𝑗  −  1 ) ,  𝑗 ) ) ) | 
						
							| 17 |  | eqid | ⊢ ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) )  =  ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) | 
						
							| 18 |  | eqid | ⊢ ( pmSgn ‘ ( 1 ... 𝑁 ) )  =  ( pmSgn ‘ ( 1 ... 𝑁 ) ) | 
						
							| 19 |  | eqid | ⊢ ( 𝐼 ( ( ( 1 ... 𝑁 )  minMatR1  𝑅 ) ‘ 𝑀 ) 𝐽 )  =  ( 𝐼 ( ( ( 1 ... 𝑁 )  minMatR1  𝑅 ) ‘ 𝑀 ) 𝐽 ) | 
						
							| 20 |  | fveq2 | ⊢ ( 𝑘  =  𝑖  →  ( ( 𝑃  ∘  ◡ 𝑆 ) ‘ 𝑘 )  =  ( ( 𝑃  ∘  ◡ 𝑆 ) ‘ 𝑖 ) ) | 
						
							| 21 | 20 | oveq1d | ⊢ ( 𝑘  =  𝑖  →  ( ( ( 𝑃  ∘  ◡ 𝑆 ) ‘ 𝑘 ) ( 𝐼 ( ( ( 1 ... 𝑁 )  minMatR1  𝑅 ) ‘ 𝑀 ) 𝐽 ) ( ( 𝑄  ∘  ◡ 𝑇 ) ‘ 𝑙 ) )  =  ( ( ( 𝑃  ∘  ◡ 𝑆 ) ‘ 𝑖 ) ( 𝐼 ( ( ( 1 ... 𝑁 )  minMatR1  𝑅 ) ‘ 𝑀 ) 𝐽 ) ( ( 𝑄  ∘  ◡ 𝑇 ) ‘ 𝑙 ) ) ) | 
						
							| 22 |  | fveq2 | ⊢ ( 𝑙  =  𝑗  →  ( ( 𝑄  ∘  ◡ 𝑇 ) ‘ 𝑙 )  =  ( ( 𝑄  ∘  ◡ 𝑇 ) ‘ 𝑗 ) ) | 
						
							| 23 | 22 | oveq2d | ⊢ ( 𝑙  =  𝑗  →  ( ( ( 𝑃  ∘  ◡ 𝑆 ) ‘ 𝑖 ) ( 𝐼 ( ( ( 1 ... 𝑁 )  minMatR1  𝑅 ) ‘ 𝑀 ) 𝐽 ) ( ( 𝑄  ∘  ◡ 𝑇 ) ‘ 𝑙 ) )  =  ( ( ( 𝑃  ∘  ◡ 𝑆 ) ‘ 𝑖 ) ( 𝐼 ( ( ( 1 ... 𝑁 )  minMatR1  𝑅 ) ‘ 𝑀 ) 𝐽 ) ( ( 𝑄  ∘  ◡ 𝑇 ) ‘ 𝑗 ) ) ) | 
						
							| 24 | 21 23 | cbvmpov | ⊢ ( 𝑘  ∈  ( 1 ... 𝑁 ) ,  𝑙  ∈  ( 1 ... 𝑁 )  ↦  ( ( ( 𝑃  ∘  ◡ 𝑆 ) ‘ 𝑘 ) ( 𝐼 ( ( ( 1 ... 𝑁 )  minMatR1  𝑅 ) ‘ 𝑀 ) 𝐽 ) ( ( 𝑄  ∘  ◡ 𝑇 ) ‘ 𝑙 ) ) )  =  ( 𝑖  ∈  ( 1 ... 𝑁 ) ,  𝑗  ∈  ( 1 ... 𝑁 )  ↦  ( ( ( 𝑃  ∘  ◡ 𝑆 ) ‘ 𝑖 ) ( 𝐼 ( ( ( 1 ... 𝑁 )  minMatR1  𝑅 ) ‘ 𝑀 ) 𝐽 ) ( ( 𝑄  ∘  ◡ 𝑇 ) ‘ 𝑗 ) ) ) | 
						
							| 25 |  | eqid | ⊢ ( 1 ... 𝑁 )  =  ( 1 ... 𝑁 ) | 
						
							| 26 |  | eqid | ⊢ ( SymGrp ‘ ( 1 ... 𝑁 ) )  =  ( SymGrp ‘ ( 1 ... 𝑁 ) ) | 
						
							| 27 | 25 13 26 17 | fzto1st | ⊢ ( 𝐼  ∈  ( 1 ... 𝑁 )  →  𝑃  ∈  ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ) | 
						
							| 28 | 10 27 | syl | ⊢ ( 𝜑  →  𝑃  ∈  ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ) | 
						
							| 29 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 30 | 8 29 | eleqtrdi | ⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 31 |  | eluzfz2 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 1 )  →  𝑁  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 32 | 30 31 | syl | ⊢ ( 𝜑  →  𝑁  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 33 | 25 14 26 17 | fzto1st | ⊢ ( 𝑁  ∈  ( 1 ... 𝑁 )  →  𝑆  ∈  ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ) | 
						
							| 34 | 32 33 | syl | ⊢ ( 𝜑  →  𝑆  ∈  ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ) | 
						
							| 35 |  | eqid | ⊢ ( invg ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) )  =  ( invg ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) | 
						
							| 36 | 26 17 35 | symginv | ⊢ ( 𝑆  ∈  ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) )  →  ( ( invg ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ‘ 𝑆 )  =  ◡ 𝑆 ) | 
						
							| 37 | 34 36 | syl | ⊢ ( 𝜑  →  ( ( invg ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ‘ 𝑆 )  =  ◡ 𝑆 ) | 
						
							| 38 |  | fzfid | ⊢ ( 𝜑  →  ( 1 ... 𝑁 )  ∈  Fin ) | 
						
							| 39 | 26 | symggrp | ⊢ ( ( 1 ... 𝑁 )  ∈  Fin  →  ( SymGrp ‘ ( 1 ... 𝑁 ) )  ∈  Grp ) | 
						
							| 40 | 38 39 | syl | ⊢ ( 𝜑  →  ( SymGrp ‘ ( 1 ... 𝑁 ) )  ∈  Grp ) | 
						
							| 41 | 17 35 | grpinvcl | ⊢ ( ( ( SymGrp ‘ ( 1 ... 𝑁 ) )  ∈  Grp  ∧  𝑆  ∈  ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) )  →  ( ( invg ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ‘ 𝑆 )  ∈  ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ) | 
						
							| 42 | 40 34 41 | syl2anc | ⊢ ( 𝜑  →  ( ( invg ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ‘ 𝑆 )  ∈  ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ) | 
						
							| 43 | 37 42 | eqeltrrd | ⊢ ( 𝜑  →  ◡ 𝑆  ∈  ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ) | 
						
							| 44 |  | eqid | ⊢ ( +g ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) )  =  ( +g ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) | 
						
							| 45 | 26 17 44 | symgov | ⊢ ( ( 𝑃  ∈  ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) )  ∧  ◡ 𝑆  ∈  ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) )  →  ( 𝑃 ( +g ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ◡ 𝑆 )  =  ( 𝑃  ∘  ◡ 𝑆 ) ) | 
						
							| 46 | 26 17 44 | symgcl | ⊢ ( ( 𝑃  ∈  ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) )  ∧  ◡ 𝑆  ∈  ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) )  →  ( 𝑃 ( +g ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ◡ 𝑆 )  ∈  ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ) | 
						
							| 47 | 45 46 | eqeltrrd | ⊢ ( ( 𝑃  ∈  ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) )  ∧  ◡ 𝑆  ∈  ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) )  →  ( 𝑃  ∘  ◡ 𝑆 )  ∈  ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ) | 
						
							| 48 | 28 43 47 | syl2anc | ⊢ ( 𝜑  →  ( 𝑃  ∘  ◡ 𝑆 )  ∈  ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ) | 
						
							| 49 | 25 15 26 17 | fzto1st | ⊢ ( 𝐽  ∈  ( 1 ... 𝑁 )  →  𝑄  ∈  ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ) | 
						
							| 50 | 11 49 | syl | ⊢ ( 𝜑  →  𝑄  ∈  ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ) | 
						
							| 51 | 25 16 26 17 | fzto1st | ⊢ ( 𝑁  ∈  ( 1 ... 𝑁 )  →  𝑇  ∈  ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ) | 
						
							| 52 | 32 51 | syl | ⊢ ( 𝜑  →  𝑇  ∈  ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ) | 
						
							| 53 | 26 17 35 | symginv | ⊢ ( 𝑇  ∈  ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) )  →  ( ( invg ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ‘ 𝑇 )  =  ◡ 𝑇 ) | 
						
							| 54 | 52 53 | syl | ⊢ ( 𝜑  →  ( ( invg ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ‘ 𝑇 )  =  ◡ 𝑇 ) | 
						
							| 55 | 17 35 | grpinvcl | ⊢ ( ( ( SymGrp ‘ ( 1 ... 𝑁 ) )  ∈  Grp  ∧  𝑇  ∈  ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) )  →  ( ( invg ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ‘ 𝑇 )  ∈  ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ) | 
						
							| 56 | 40 52 55 | syl2anc | ⊢ ( 𝜑  →  ( ( invg ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ‘ 𝑇 )  ∈  ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ) | 
						
							| 57 | 54 56 | eqeltrrd | ⊢ ( 𝜑  →  ◡ 𝑇  ∈  ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ) | 
						
							| 58 | 26 17 44 | symgov | ⊢ ( ( 𝑄  ∈  ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) )  ∧  ◡ 𝑇  ∈  ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) )  →  ( 𝑄 ( +g ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ◡ 𝑇 )  =  ( 𝑄  ∘  ◡ 𝑇 ) ) | 
						
							| 59 | 26 17 44 | symgcl | ⊢ ( ( 𝑄  ∈  ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) )  ∧  ◡ 𝑇  ∈  ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) )  →  ( 𝑄 ( +g ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ◡ 𝑇 )  ∈  ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ) | 
						
							| 60 | 58 59 | eqeltrrd | ⊢ ( ( 𝑄  ∈  ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) )  ∧  ◡ 𝑇  ∈  ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) )  →  ( 𝑄  ∘  ◡ 𝑇 )  ∈  ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ) | 
						
							| 61 | 50 57 60 | syl2anc | ⊢ ( 𝜑  →  ( 𝑄  ∘  ◡ 𝑇 )  ∈  ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ) | 
						
							| 62 | 26 17 | symgbasf1o | ⊢ ( 𝑆  ∈  ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) )  →  𝑆 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) | 
						
							| 63 | 34 62 | syl | ⊢ ( 𝜑  →  𝑆 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) | 
						
							| 64 |  | f1of1 | ⊢ ( 𝑆 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 )  →  𝑆 : ( 1 ... 𝑁 ) –1-1→ ( 1 ... 𝑁 ) ) | 
						
							| 65 |  | df-f1 | ⊢ ( 𝑆 : ( 1 ... 𝑁 ) –1-1→ ( 1 ... 𝑁 )  ↔  ( 𝑆 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑁 )  ∧  Fun  ◡ 𝑆 ) ) | 
						
							| 66 | 65 | simprbi | ⊢ ( 𝑆 : ( 1 ... 𝑁 ) –1-1→ ( 1 ... 𝑁 )  →  Fun  ◡ 𝑆 ) | 
						
							| 67 | 63 64 66 | 3syl | ⊢ ( 𝜑  →  Fun  ◡ 𝑆 ) | 
						
							| 68 |  | f1ocnv | ⊢ ( 𝑆 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 )  →  ◡ 𝑆 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) | 
						
							| 69 |  | f1odm | ⊢ ( ◡ 𝑆 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 )  →  dom  ◡ 𝑆  =  ( 1 ... 𝑁 ) ) | 
						
							| 70 | 63 68 69 | 3syl | ⊢ ( 𝜑  →  dom  ◡ 𝑆  =  ( 1 ... 𝑁 ) ) | 
						
							| 71 | 32 70 | eleqtrrd | ⊢ ( 𝜑  →  𝑁  ∈  dom  ◡ 𝑆 ) | 
						
							| 72 |  | fvco | ⊢ ( ( Fun  ◡ 𝑆  ∧  𝑁  ∈  dom  ◡ 𝑆 )  →  ( ( 𝑃  ∘  ◡ 𝑆 ) ‘ 𝑁 )  =  ( 𝑃 ‘ ( ◡ 𝑆 ‘ 𝑁 ) ) ) | 
						
							| 73 | 67 71 72 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝑃  ∘  ◡ 𝑆 ) ‘ 𝑁 )  =  ( 𝑃 ‘ ( ◡ 𝑆 ‘ 𝑁 ) ) ) | 
						
							| 74 | 25 14 26 17 | fzto1stinvn | ⊢ ( 𝑁  ∈  ( 1 ... 𝑁 )  →  ( ◡ 𝑆 ‘ 𝑁 )  =  1 ) | 
						
							| 75 | 32 74 | syl | ⊢ ( 𝜑  →  ( ◡ 𝑆 ‘ 𝑁 )  =  1 ) | 
						
							| 76 | 75 | fveq2d | ⊢ ( 𝜑  →  ( 𝑃 ‘ ( ◡ 𝑆 ‘ 𝑁 ) )  =  ( 𝑃 ‘ 1 ) ) | 
						
							| 77 | 25 13 | fzto1stfv1 | ⊢ ( 𝐼  ∈  ( 1 ... 𝑁 )  →  ( 𝑃 ‘ 1 )  =  𝐼 ) | 
						
							| 78 | 10 77 | syl | ⊢ ( 𝜑  →  ( 𝑃 ‘ 1 )  =  𝐼 ) | 
						
							| 79 | 73 76 78 | 3eqtrd | ⊢ ( 𝜑  →  ( ( 𝑃  ∘  ◡ 𝑆 ) ‘ 𝑁 )  =  𝐼 ) | 
						
							| 80 | 26 17 | symgbasf1o | ⊢ ( 𝑇  ∈  ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) )  →  𝑇 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) | 
						
							| 81 | 52 80 | syl | ⊢ ( 𝜑  →  𝑇 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) | 
						
							| 82 |  | f1of1 | ⊢ ( 𝑇 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 )  →  𝑇 : ( 1 ... 𝑁 ) –1-1→ ( 1 ... 𝑁 ) ) | 
						
							| 83 |  | df-f1 | ⊢ ( 𝑇 : ( 1 ... 𝑁 ) –1-1→ ( 1 ... 𝑁 )  ↔  ( 𝑇 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑁 )  ∧  Fun  ◡ 𝑇 ) ) | 
						
							| 84 | 83 | simprbi | ⊢ ( 𝑇 : ( 1 ... 𝑁 ) –1-1→ ( 1 ... 𝑁 )  →  Fun  ◡ 𝑇 ) | 
						
							| 85 | 81 82 84 | 3syl | ⊢ ( 𝜑  →  Fun  ◡ 𝑇 ) | 
						
							| 86 |  | f1ocnv | ⊢ ( 𝑇 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 )  →  ◡ 𝑇 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) | 
						
							| 87 |  | f1odm | ⊢ ( ◡ 𝑇 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 )  →  dom  ◡ 𝑇  =  ( 1 ... 𝑁 ) ) | 
						
							| 88 | 81 86 87 | 3syl | ⊢ ( 𝜑  →  dom  ◡ 𝑇  =  ( 1 ... 𝑁 ) ) | 
						
							| 89 | 32 88 | eleqtrrd | ⊢ ( 𝜑  →  𝑁  ∈  dom  ◡ 𝑇 ) | 
						
							| 90 |  | fvco | ⊢ ( ( Fun  ◡ 𝑇  ∧  𝑁  ∈  dom  ◡ 𝑇 )  →  ( ( 𝑄  ∘  ◡ 𝑇 ) ‘ 𝑁 )  =  ( 𝑄 ‘ ( ◡ 𝑇 ‘ 𝑁 ) ) ) | 
						
							| 91 | 85 89 90 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝑄  ∘  ◡ 𝑇 ) ‘ 𝑁 )  =  ( 𝑄 ‘ ( ◡ 𝑇 ‘ 𝑁 ) ) ) | 
						
							| 92 | 25 16 26 17 | fzto1stinvn | ⊢ ( 𝑁  ∈  ( 1 ... 𝑁 )  →  ( ◡ 𝑇 ‘ 𝑁 )  =  1 ) | 
						
							| 93 | 32 92 | syl | ⊢ ( 𝜑  →  ( ◡ 𝑇 ‘ 𝑁 )  =  1 ) | 
						
							| 94 | 93 | fveq2d | ⊢ ( 𝜑  →  ( 𝑄 ‘ ( ◡ 𝑇 ‘ 𝑁 ) )  =  ( 𝑄 ‘ 1 ) ) | 
						
							| 95 | 25 15 | fzto1stfv1 | ⊢ ( 𝐽  ∈  ( 1 ... 𝑁 )  →  ( 𝑄 ‘ 1 )  =  𝐽 ) | 
						
							| 96 | 11 95 | syl | ⊢ ( 𝜑  →  ( 𝑄 ‘ 1 )  =  𝐽 ) | 
						
							| 97 | 91 94 96 | 3eqtrd | ⊢ ( 𝜑  →  ( ( 𝑄  ∘  ◡ 𝑇 ) ‘ 𝑁 )  =  𝐽 ) | 
						
							| 98 |  | crngring | ⊢ ( 𝑅  ∈  CRing  →  𝑅  ∈  Ring ) | 
						
							| 99 | 9 98 | syl | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 100 | 2 1 | minmar1cl | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ∈  ( 1 ... 𝑁 )  ∧  𝐽  ∈  ( 1 ... 𝑁 ) ) )  →  ( 𝐼 ( ( ( 1 ... 𝑁 )  minMatR1  𝑅 ) ‘ 𝑀 ) 𝐽 )  ∈  𝐵 ) | 
						
							| 101 | 99 12 10 11 100 | syl22anc | ⊢ ( 𝜑  →  ( 𝐼 ( ( ( 1 ... 𝑁 )  minMatR1  𝑅 ) ‘ 𝑀 ) 𝐽 )  ∈  𝐵 ) | 
						
							| 102 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 24 101 | madjusmdetlem3 | ⊢ ( 𝜑  →  ( 𝐼 ( subMat1 ‘ ( 𝐼 ( ( ( 1 ... 𝑁 )  minMatR1  𝑅 ) ‘ 𝑀 ) 𝐽 ) ) 𝐽 )  =  ( 𝑁 ( subMat1 ‘ ( 𝑘  ∈  ( 1 ... 𝑁 ) ,  𝑙  ∈  ( 1 ... 𝑁 )  ↦  ( ( ( 𝑃  ∘  ◡ 𝑆 ) ‘ 𝑘 ) ( 𝐼 ( ( ( 1 ... 𝑁 )  minMatR1  𝑅 ) ‘ 𝑀 ) 𝐽 ) ( ( 𝑄  ∘  ◡ 𝑇 ) ‘ 𝑙 ) ) ) ) 𝑁 ) ) | 
						
							| 103 | 1 2 3 4 5 6 7 8 9 10 11 12 17 18 19 24 48 61 79 97 102 | madjusmdetlem1 | ⊢ ( 𝜑  →  ( 𝐽 ( 𝐾 ‘ 𝑀 ) 𝐼 )  =  ( ( 𝑍 ‘ ( ( ( pmSgn ‘ ( 1 ... 𝑁 ) ) ‘ ( 𝑃  ∘  ◡ 𝑆 ) )  ·  ( ( pmSgn ‘ ( 1 ... 𝑁 ) ) ‘ ( 𝑄  ∘  ◡ 𝑇 ) ) ) )  ·  ( 𝐸 ‘ ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝐽 ) ) ) ) | 
						
							| 104 | 26 18 17 | psgnco | ⊢ ( ( ( 1 ... 𝑁 )  ∈  Fin  ∧  𝑃  ∈  ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) )  ∧  ◡ 𝑆  ∈  ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) )  →  ( ( pmSgn ‘ ( 1 ... 𝑁 ) ) ‘ ( 𝑃  ∘  ◡ 𝑆 ) )  =  ( ( ( pmSgn ‘ ( 1 ... 𝑁 ) ) ‘ 𝑃 )  ·  ( ( pmSgn ‘ ( 1 ... 𝑁 ) ) ‘ ◡ 𝑆 ) ) ) | 
						
							| 105 | 38 28 43 104 | syl3anc | ⊢ ( 𝜑  →  ( ( pmSgn ‘ ( 1 ... 𝑁 ) ) ‘ ( 𝑃  ∘  ◡ 𝑆 ) )  =  ( ( ( pmSgn ‘ ( 1 ... 𝑁 ) ) ‘ 𝑃 )  ·  ( ( pmSgn ‘ ( 1 ... 𝑁 ) ) ‘ ◡ 𝑆 ) ) ) | 
						
							| 106 | 25 13 26 17 18 | psgnfzto1st | ⊢ ( 𝐼  ∈  ( 1 ... 𝑁 )  →  ( ( pmSgn ‘ ( 1 ... 𝑁 ) ) ‘ 𝑃 )  =  ( - 1 ↑ ( 𝐼  +  1 ) ) ) | 
						
							| 107 | 10 106 | syl | ⊢ ( 𝜑  →  ( ( pmSgn ‘ ( 1 ... 𝑁 ) ) ‘ 𝑃 )  =  ( - 1 ↑ ( 𝐼  +  1 ) ) ) | 
						
							| 108 | 26 18 17 | psgninv | ⊢ ( ( ( 1 ... 𝑁 )  ∈  Fin  ∧  𝑆  ∈  ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) )  →  ( ( pmSgn ‘ ( 1 ... 𝑁 ) ) ‘ ◡ 𝑆 )  =  ( ( pmSgn ‘ ( 1 ... 𝑁 ) ) ‘ 𝑆 ) ) | 
						
							| 109 | 38 34 108 | syl2anc | ⊢ ( 𝜑  →  ( ( pmSgn ‘ ( 1 ... 𝑁 ) ) ‘ ◡ 𝑆 )  =  ( ( pmSgn ‘ ( 1 ... 𝑁 ) ) ‘ 𝑆 ) ) | 
						
							| 110 | 25 14 26 17 18 | psgnfzto1st | ⊢ ( 𝑁  ∈  ( 1 ... 𝑁 )  →  ( ( pmSgn ‘ ( 1 ... 𝑁 ) ) ‘ 𝑆 )  =  ( - 1 ↑ ( 𝑁  +  1 ) ) ) | 
						
							| 111 | 32 110 | syl | ⊢ ( 𝜑  →  ( ( pmSgn ‘ ( 1 ... 𝑁 ) ) ‘ 𝑆 )  =  ( - 1 ↑ ( 𝑁  +  1 ) ) ) | 
						
							| 112 | 109 111 | eqtrd | ⊢ ( 𝜑  →  ( ( pmSgn ‘ ( 1 ... 𝑁 ) ) ‘ ◡ 𝑆 )  =  ( - 1 ↑ ( 𝑁  +  1 ) ) ) | 
						
							| 113 | 107 112 | oveq12d | ⊢ ( 𝜑  →  ( ( ( pmSgn ‘ ( 1 ... 𝑁 ) ) ‘ 𝑃 )  ·  ( ( pmSgn ‘ ( 1 ... 𝑁 ) ) ‘ ◡ 𝑆 ) )  =  ( ( - 1 ↑ ( 𝐼  +  1 ) )  ·  ( - 1 ↑ ( 𝑁  +  1 ) ) ) ) | 
						
							| 114 | 105 113 | eqtrd | ⊢ ( 𝜑  →  ( ( pmSgn ‘ ( 1 ... 𝑁 ) ) ‘ ( 𝑃  ∘  ◡ 𝑆 ) )  =  ( ( - 1 ↑ ( 𝐼  +  1 ) )  ·  ( - 1 ↑ ( 𝑁  +  1 ) ) ) ) | 
						
							| 115 | 26 18 17 | psgnco | ⊢ ( ( ( 1 ... 𝑁 )  ∈  Fin  ∧  𝑄  ∈  ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) )  ∧  ◡ 𝑇  ∈  ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) )  →  ( ( pmSgn ‘ ( 1 ... 𝑁 ) ) ‘ ( 𝑄  ∘  ◡ 𝑇 ) )  =  ( ( ( pmSgn ‘ ( 1 ... 𝑁 ) ) ‘ 𝑄 )  ·  ( ( pmSgn ‘ ( 1 ... 𝑁 ) ) ‘ ◡ 𝑇 ) ) ) | 
						
							| 116 | 38 50 57 115 | syl3anc | ⊢ ( 𝜑  →  ( ( pmSgn ‘ ( 1 ... 𝑁 ) ) ‘ ( 𝑄  ∘  ◡ 𝑇 ) )  =  ( ( ( pmSgn ‘ ( 1 ... 𝑁 ) ) ‘ 𝑄 )  ·  ( ( pmSgn ‘ ( 1 ... 𝑁 ) ) ‘ ◡ 𝑇 ) ) ) | 
						
							| 117 | 25 15 26 17 18 | psgnfzto1st | ⊢ ( 𝐽  ∈  ( 1 ... 𝑁 )  →  ( ( pmSgn ‘ ( 1 ... 𝑁 ) ) ‘ 𝑄 )  =  ( - 1 ↑ ( 𝐽  +  1 ) ) ) | 
						
							| 118 | 11 117 | syl | ⊢ ( 𝜑  →  ( ( pmSgn ‘ ( 1 ... 𝑁 ) ) ‘ 𝑄 )  =  ( - 1 ↑ ( 𝐽  +  1 ) ) ) | 
						
							| 119 | 26 18 17 | psgninv | ⊢ ( ( ( 1 ... 𝑁 )  ∈  Fin  ∧  𝑇  ∈  ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) )  →  ( ( pmSgn ‘ ( 1 ... 𝑁 ) ) ‘ ◡ 𝑇 )  =  ( ( pmSgn ‘ ( 1 ... 𝑁 ) ) ‘ 𝑇 ) ) | 
						
							| 120 | 38 52 119 | syl2anc | ⊢ ( 𝜑  →  ( ( pmSgn ‘ ( 1 ... 𝑁 ) ) ‘ ◡ 𝑇 )  =  ( ( pmSgn ‘ ( 1 ... 𝑁 ) ) ‘ 𝑇 ) ) | 
						
							| 121 | 25 16 26 17 18 | psgnfzto1st | ⊢ ( 𝑁  ∈  ( 1 ... 𝑁 )  →  ( ( pmSgn ‘ ( 1 ... 𝑁 ) ) ‘ 𝑇 )  =  ( - 1 ↑ ( 𝑁  +  1 ) ) ) | 
						
							| 122 | 32 121 | syl | ⊢ ( 𝜑  →  ( ( pmSgn ‘ ( 1 ... 𝑁 ) ) ‘ 𝑇 )  =  ( - 1 ↑ ( 𝑁  +  1 ) ) ) | 
						
							| 123 | 120 122 | eqtrd | ⊢ ( 𝜑  →  ( ( pmSgn ‘ ( 1 ... 𝑁 ) ) ‘ ◡ 𝑇 )  =  ( - 1 ↑ ( 𝑁  +  1 ) ) ) | 
						
							| 124 | 118 123 | oveq12d | ⊢ ( 𝜑  →  ( ( ( pmSgn ‘ ( 1 ... 𝑁 ) ) ‘ 𝑄 )  ·  ( ( pmSgn ‘ ( 1 ... 𝑁 ) ) ‘ ◡ 𝑇 ) )  =  ( ( - 1 ↑ ( 𝐽  +  1 ) )  ·  ( - 1 ↑ ( 𝑁  +  1 ) ) ) ) | 
						
							| 125 | 116 124 | eqtrd | ⊢ ( 𝜑  →  ( ( pmSgn ‘ ( 1 ... 𝑁 ) ) ‘ ( 𝑄  ∘  ◡ 𝑇 ) )  =  ( ( - 1 ↑ ( 𝐽  +  1 ) )  ·  ( - 1 ↑ ( 𝑁  +  1 ) ) ) ) | 
						
							| 126 | 114 125 | oveq12d | ⊢ ( 𝜑  →  ( ( ( pmSgn ‘ ( 1 ... 𝑁 ) ) ‘ ( 𝑃  ∘  ◡ 𝑆 ) )  ·  ( ( pmSgn ‘ ( 1 ... 𝑁 ) ) ‘ ( 𝑄  ∘  ◡ 𝑇 ) ) )  =  ( ( ( - 1 ↑ ( 𝐼  +  1 ) )  ·  ( - 1 ↑ ( 𝑁  +  1 ) ) )  ·  ( ( - 1 ↑ ( 𝐽  +  1 ) )  ·  ( - 1 ↑ ( 𝑁  +  1 ) ) ) ) ) | 
						
							| 127 |  | 1cnd | ⊢ ( 𝜑  →  1  ∈  ℂ ) | 
						
							| 128 | 127 | negcld | ⊢ ( 𝜑  →  - 1  ∈  ℂ ) | 
						
							| 129 |  | fz1ssnn | ⊢ ( 1 ... 𝑁 )  ⊆  ℕ | 
						
							| 130 | 129 10 | sselid | ⊢ ( 𝜑  →  𝐼  ∈  ℕ ) | 
						
							| 131 | 130 | nnnn0d | ⊢ ( 𝜑  →  𝐼  ∈  ℕ0 ) | 
						
							| 132 |  | 1nn0 | ⊢ 1  ∈  ℕ0 | 
						
							| 133 | 132 | a1i | ⊢ ( 𝜑  →  1  ∈  ℕ0 ) | 
						
							| 134 | 131 133 | nn0addcld | ⊢ ( 𝜑  →  ( 𝐼  +  1 )  ∈  ℕ0 ) | 
						
							| 135 | 128 134 | expcld | ⊢ ( 𝜑  →  ( - 1 ↑ ( 𝐼  +  1 ) )  ∈  ℂ ) | 
						
							| 136 | 8 | nnnn0d | ⊢ ( 𝜑  →  𝑁  ∈  ℕ0 ) | 
						
							| 137 | 136 133 | nn0addcld | ⊢ ( 𝜑  →  ( 𝑁  +  1 )  ∈  ℕ0 ) | 
						
							| 138 | 128 137 | expcld | ⊢ ( 𝜑  →  ( - 1 ↑ ( 𝑁  +  1 ) )  ∈  ℂ ) | 
						
							| 139 | 129 11 | sselid | ⊢ ( 𝜑  →  𝐽  ∈  ℕ ) | 
						
							| 140 | 139 | nnnn0d | ⊢ ( 𝜑  →  𝐽  ∈  ℕ0 ) | 
						
							| 141 | 140 133 | nn0addcld | ⊢ ( 𝜑  →  ( 𝐽  +  1 )  ∈  ℕ0 ) | 
						
							| 142 | 128 141 | expcld | ⊢ ( 𝜑  →  ( - 1 ↑ ( 𝐽  +  1 ) )  ∈  ℂ ) | 
						
							| 143 | 135 138 142 138 | mul4d | ⊢ ( 𝜑  →  ( ( ( - 1 ↑ ( 𝐼  +  1 ) )  ·  ( - 1 ↑ ( 𝑁  +  1 ) ) )  ·  ( ( - 1 ↑ ( 𝐽  +  1 ) )  ·  ( - 1 ↑ ( 𝑁  +  1 ) ) ) )  =  ( ( ( - 1 ↑ ( 𝐼  +  1 ) )  ·  ( - 1 ↑ ( 𝐽  +  1 ) ) )  ·  ( ( - 1 ↑ ( 𝑁  +  1 ) )  ·  ( - 1 ↑ ( 𝑁  +  1 ) ) ) ) ) | 
						
							| 144 | 128 141 134 | expaddd | ⊢ ( 𝜑  →  ( - 1 ↑ ( ( 𝐼  +  1 )  +  ( 𝐽  +  1 ) ) )  =  ( ( - 1 ↑ ( 𝐼  +  1 ) )  ·  ( - 1 ↑ ( 𝐽  +  1 ) ) ) ) | 
						
							| 145 | 130 | nncnd | ⊢ ( 𝜑  →  𝐼  ∈  ℂ ) | 
						
							| 146 | 139 | nncnd | ⊢ ( 𝜑  →  𝐽  ∈  ℂ ) | 
						
							| 147 | 145 127 146 127 | add4d | ⊢ ( 𝜑  →  ( ( 𝐼  +  1 )  +  ( 𝐽  +  1 ) )  =  ( ( 𝐼  +  𝐽 )  +  ( 1  +  1 ) ) ) | 
						
							| 148 |  | 1p1e2 | ⊢ ( 1  +  1 )  =  2 | 
						
							| 149 | 148 | oveq2i | ⊢ ( ( 𝐼  +  𝐽 )  +  ( 1  +  1 ) )  =  ( ( 𝐼  +  𝐽 )  +  2 ) | 
						
							| 150 | 147 149 | eqtrdi | ⊢ ( 𝜑  →  ( ( 𝐼  +  1 )  +  ( 𝐽  +  1 ) )  =  ( ( 𝐼  +  𝐽 )  +  2 ) ) | 
						
							| 151 | 150 | oveq2d | ⊢ ( 𝜑  →  ( - 1 ↑ ( ( 𝐼  +  1 )  +  ( 𝐽  +  1 ) ) )  =  ( - 1 ↑ ( ( 𝐼  +  𝐽 )  +  2 ) ) ) | 
						
							| 152 |  | 2nn0 | ⊢ 2  ∈  ℕ0 | 
						
							| 153 | 152 | a1i | ⊢ ( 𝜑  →  2  ∈  ℕ0 ) | 
						
							| 154 | 131 140 | nn0addcld | ⊢ ( 𝜑  →  ( 𝐼  +  𝐽 )  ∈  ℕ0 ) | 
						
							| 155 | 128 153 154 | expaddd | ⊢ ( 𝜑  →  ( - 1 ↑ ( ( 𝐼  +  𝐽 )  +  2 ) )  =  ( ( - 1 ↑ ( 𝐼  +  𝐽 ) )  ·  ( - 1 ↑ 2 ) ) ) | 
						
							| 156 |  | neg1sqe1 | ⊢ ( - 1 ↑ 2 )  =  1 | 
						
							| 157 | 156 | oveq2i | ⊢ ( ( - 1 ↑ ( 𝐼  +  𝐽 ) )  ·  ( - 1 ↑ 2 ) )  =  ( ( - 1 ↑ ( 𝐼  +  𝐽 ) )  ·  1 ) | 
						
							| 158 | 155 157 | eqtrdi | ⊢ ( 𝜑  →  ( - 1 ↑ ( ( 𝐼  +  𝐽 )  +  2 ) )  =  ( ( - 1 ↑ ( 𝐼  +  𝐽 ) )  ·  1 ) ) | 
						
							| 159 | 128 154 | expcld | ⊢ ( 𝜑  →  ( - 1 ↑ ( 𝐼  +  𝐽 ) )  ∈  ℂ ) | 
						
							| 160 | 159 | mulridd | ⊢ ( 𝜑  →  ( ( - 1 ↑ ( 𝐼  +  𝐽 ) )  ·  1 )  =  ( - 1 ↑ ( 𝐼  +  𝐽 ) ) ) | 
						
							| 161 | 151 158 160 | 3eqtrd | ⊢ ( 𝜑  →  ( - 1 ↑ ( ( 𝐼  +  1 )  +  ( 𝐽  +  1 ) ) )  =  ( - 1 ↑ ( 𝐼  +  𝐽 ) ) ) | 
						
							| 162 | 144 161 | eqtr3d | ⊢ ( 𝜑  →  ( ( - 1 ↑ ( 𝐼  +  1 ) )  ·  ( - 1 ↑ ( 𝐽  +  1 ) ) )  =  ( - 1 ↑ ( 𝐼  +  𝐽 ) ) ) | 
						
							| 163 | 137 | nn0zd | ⊢ ( 𝜑  →  ( 𝑁  +  1 )  ∈  ℤ ) | 
						
							| 164 |  | m1expcl2 | ⊢ ( ( 𝑁  +  1 )  ∈  ℤ  →  ( - 1 ↑ ( 𝑁  +  1 ) )  ∈  { - 1 ,  1 } ) | 
						
							| 165 |  | 1neg1t1neg1 | ⊢ ( ( - 1 ↑ ( 𝑁  +  1 ) )  ∈  { - 1 ,  1 }  →  ( ( - 1 ↑ ( 𝑁  +  1 ) )  ·  ( - 1 ↑ ( 𝑁  +  1 ) ) )  =  1 ) | 
						
							| 166 | 163 164 165 | 3syl | ⊢ ( 𝜑  →  ( ( - 1 ↑ ( 𝑁  +  1 ) )  ·  ( - 1 ↑ ( 𝑁  +  1 ) ) )  =  1 ) | 
						
							| 167 | 162 166 | oveq12d | ⊢ ( 𝜑  →  ( ( ( - 1 ↑ ( 𝐼  +  1 ) )  ·  ( - 1 ↑ ( 𝐽  +  1 ) ) )  ·  ( ( - 1 ↑ ( 𝑁  +  1 ) )  ·  ( - 1 ↑ ( 𝑁  +  1 ) ) ) )  =  ( ( - 1 ↑ ( 𝐼  +  𝐽 ) )  ·  1 ) ) | 
						
							| 168 | 143 167 160 | 3eqtrd | ⊢ ( 𝜑  →  ( ( ( - 1 ↑ ( 𝐼  +  1 ) )  ·  ( - 1 ↑ ( 𝑁  +  1 ) ) )  ·  ( ( - 1 ↑ ( 𝐽  +  1 ) )  ·  ( - 1 ↑ ( 𝑁  +  1 ) ) ) )  =  ( - 1 ↑ ( 𝐼  +  𝐽 ) ) ) | 
						
							| 169 | 126 168 | eqtrd | ⊢ ( 𝜑  →  ( ( ( pmSgn ‘ ( 1 ... 𝑁 ) ) ‘ ( 𝑃  ∘  ◡ 𝑆 ) )  ·  ( ( pmSgn ‘ ( 1 ... 𝑁 ) ) ‘ ( 𝑄  ∘  ◡ 𝑇 ) ) )  =  ( - 1 ↑ ( 𝐼  +  𝐽 ) ) ) | 
						
							| 170 | 169 | fveq2d | ⊢ ( 𝜑  →  ( 𝑍 ‘ ( ( ( pmSgn ‘ ( 1 ... 𝑁 ) ) ‘ ( 𝑃  ∘  ◡ 𝑆 ) )  ·  ( ( pmSgn ‘ ( 1 ... 𝑁 ) ) ‘ ( 𝑄  ∘  ◡ 𝑇 ) ) ) )  =  ( 𝑍 ‘ ( - 1 ↑ ( 𝐼  +  𝐽 ) ) ) ) | 
						
							| 171 | 170 | oveq1d | ⊢ ( 𝜑  →  ( ( 𝑍 ‘ ( ( ( pmSgn ‘ ( 1 ... 𝑁 ) ) ‘ ( 𝑃  ∘  ◡ 𝑆 ) )  ·  ( ( pmSgn ‘ ( 1 ... 𝑁 ) ) ‘ ( 𝑄  ∘  ◡ 𝑇 ) ) ) )  ·  ( 𝐸 ‘ ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝐽 ) ) )  =  ( ( 𝑍 ‘ ( - 1 ↑ ( 𝐼  +  𝐽 ) ) )  ·  ( 𝐸 ‘ ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝐽 ) ) ) ) | 
						
							| 172 | 103 171 | eqtrd | ⊢ ( 𝜑  →  ( 𝐽 ( 𝐾 ‘ 𝑀 ) 𝐼 )  =  ( ( 𝑍 ‘ ( - 1 ↑ ( 𝐼  +  𝐽 ) ) )  ·  ( 𝐸 ‘ ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝐽 ) ) ) ) |