Step |
Hyp |
Ref |
Expression |
1 |
|
madjusmdet.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
2 |
|
madjusmdet.a |
⊢ 𝐴 = ( ( 1 ... 𝑁 ) Mat 𝑅 ) |
3 |
|
madjusmdet.d |
⊢ 𝐷 = ( ( 1 ... 𝑁 ) maDet 𝑅 ) |
4 |
|
madjusmdet.k |
⊢ 𝐾 = ( ( 1 ... 𝑁 ) maAdju 𝑅 ) |
5 |
|
madjusmdet.t |
⊢ · = ( .r ‘ 𝑅 ) |
6 |
|
madjusmdet.z |
⊢ 𝑍 = ( ℤRHom ‘ 𝑅 ) |
7 |
|
madjusmdet.e |
⊢ 𝐸 = ( ( 1 ... ( 𝑁 − 1 ) ) maDet 𝑅 ) |
8 |
|
madjusmdet.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
9 |
|
madjusmdet.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
10 |
|
madjusmdet.i |
⊢ ( 𝜑 → 𝐼 ∈ ( 1 ... 𝑁 ) ) |
11 |
|
madjusmdet.j |
⊢ ( 𝜑 → 𝐽 ∈ ( 1 ... 𝑁 ) ) |
12 |
|
madjusmdet.m |
⊢ ( 𝜑 → 𝑀 ∈ 𝐵 ) |
13 |
|
madjusmdetlem2.p |
⊢ 𝑃 = ( 𝑖 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑖 = 1 , 𝐼 , if ( 𝑖 ≤ 𝐼 , ( 𝑖 − 1 ) , 𝑖 ) ) ) |
14 |
|
madjusmdetlem2.s |
⊢ 𝑆 = ( 𝑖 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑖 = 1 , 𝑁 , if ( 𝑖 ≤ 𝑁 , ( 𝑖 − 1 ) , 𝑖 ) ) ) |
15 |
|
madjusmdetlem4.q |
⊢ 𝑄 = ( 𝑗 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑗 = 1 , 𝐽 , if ( 𝑗 ≤ 𝐽 , ( 𝑗 − 1 ) , 𝑗 ) ) ) |
16 |
|
madjusmdetlem4.t |
⊢ 𝑇 = ( 𝑗 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑗 = 1 , 𝑁 , if ( 𝑗 ≤ 𝑁 , ( 𝑗 − 1 ) , 𝑗 ) ) ) |
17 |
|
eqid |
⊢ ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) = ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) |
18 |
|
eqid |
⊢ ( pmSgn ‘ ( 1 ... 𝑁 ) ) = ( pmSgn ‘ ( 1 ... 𝑁 ) ) |
19 |
|
eqid |
⊢ ( 𝐼 ( ( ( 1 ... 𝑁 ) minMatR1 𝑅 ) ‘ 𝑀 ) 𝐽 ) = ( 𝐼 ( ( ( 1 ... 𝑁 ) minMatR1 𝑅 ) ‘ 𝑀 ) 𝐽 ) |
20 |
|
fveq2 |
⊢ ( 𝑘 = 𝑖 → ( ( 𝑃 ∘ ◡ 𝑆 ) ‘ 𝑘 ) = ( ( 𝑃 ∘ ◡ 𝑆 ) ‘ 𝑖 ) ) |
21 |
20
|
oveq1d |
⊢ ( 𝑘 = 𝑖 → ( ( ( 𝑃 ∘ ◡ 𝑆 ) ‘ 𝑘 ) ( 𝐼 ( ( ( 1 ... 𝑁 ) minMatR1 𝑅 ) ‘ 𝑀 ) 𝐽 ) ( ( 𝑄 ∘ ◡ 𝑇 ) ‘ 𝑙 ) ) = ( ( ( 𝑃 ∘ ◡ 𝑆 ) ‘ 𝑖 ) ( 𝐼 ( ( ( 1 ... 𝑁 ) minMatR1 𝑅 ) ‘ 𝑀 ) 𝐽 ) ( ( 𝑄 ∘ ◡ 𝑇 ) ‘ 𝑙 ) ) ) |
22 |
|
fveq2 |
⊢ ( 𝑙 = 𝑗 → ( ( 𝑄 ∘ ◡ 𝑇 ) ‘ 𝑙 ) = ( ( 𝑄 ∘ ◡ 𝑇 ) ‘ 𝑗 ) ) |
23 |
22
|
oveq2d |
⊢ ( 𝑙 = 𝑗 → ( ( ( 𝑃 ∘ ◡ 𝑆 ) ‘ 𝑖 ) ( 𝐼 ( ( ( 1 ... 𝑁 ) minMatR1 𝑅 ) ‘ 𝑀 ) 𝐽 ) ( ( 𝑄 ∘ ◡ 𝑇 ) ‘ 𝑙 ) ) = ( ( ( 𝑃 ∘ ◡ 𝑆 ) ‘ 𝑖 ) ( 𝐼 ( ( ( 1 ... 𝑁 ) minMatR1 𝑅 ) ‘ 𝑀 ) 𝐽 ) ( ( 𝑄 ∘ ◡ 𝑇 ) ‘ 𝑗 ) ) ) |
24 |
21 23
|
cbvmpov |
⊢ ( 𝑘 ∈ ( 1 ... 𝑁 ) , 𝑙 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 𝑃 ∘ ◡ 𝑆 ) ‘ 𝑘 ) ( 𝐼 ( ( ( 1 ... 𝑁 ) minMatR1 𝑅 ) ‘ 𝑀 ) 𝐽 ) ( ( 𝑄 ∘ ◡ 𝑇 ) ‘ 𝑙 ) ) ) = ( 𝑖 ∈ ( 1 ... 𝑁 ) , 𝑗 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 𝑃 ∘ ◡ 𝑆 ) ‘ 𝑖 ) ( 𝐼 ( ( ( 1 ... 𝑁 ) minMatR1 𝑅 ) ‘ 𝑀 ) 𝐽 ) ( ( 𝑄 ∘ ◡ 𝑇 ) ‘ 𝑗 ) ) ) |
25 |
|
eqid |
⊢ ( 1 ... 𝑁 ) = ( 1 ... 𝑁 ) |
26 |
|
eqid |
⊢ ( SymGrp ‘ ( 1 ... 𝑁 ) ) = ( SymGrp ‘ ( 1 ... 𝑁 ) ) |
27 |
25 13 26 17
|
fzto1st |
⊢ ( 𝐼 ∈ ( 1 ... 𝑁 ) → 𝑃 ∈ ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ) |
28 |
10 27
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ) |
29 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
30 |
8 29
|
eleqtrdi |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 1 ) ) |
31 |
|
eluzfz2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 1 ) → 𝑁 ∈ ( 1 ... 𝑁 ) ) |
32 |
30 31
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ( 1 ... 𝑁 ) ) |
33 |
25 14 26 17
|
fzto1st |
⊢ ( 𝑁 ∈ ( 1 ... 𝑁 ) → 𝑆 ∈ ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ) |
34 |
32 33
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ) |
35 |
|
eqid |
⊢ ( invg ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) = ( invg ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) |
36 |
26 17 35
|
symginv |
⊢ ( 𝑆 ∈ ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) → ( ( invg ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ‘ 𝑆 ) = ◡ 𝑆 ) |
37 |
34 36
|
syl |
⊢ ( 𝜑 → ( ( invg ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ‘ 𝑆 ) = ◡ 𝑆 ) |
38 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... 𝑁 ) ∈ Fin ) |
39 |
26
|
symggrp |
⊢ ( ( 1 ... 𝑁 ) ∈ Fin → ( SymGrp ‘ ( 1 ... 𝑁 ) ) ∈ Grp ) |
40 |
38 39
|
syl |
⊢ ( 𝜑 → ( SymGrp ‘ ( 1 ... 𝑁 ) ) ∈ Grp ) |
41 |
17 35
|
grpinvcl |
⊢ ( ( ( SymGrp ‘ ( 1 ... 𝑁 ) ) ∈ Grp ∧ 𝑆 ∈ ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ) → ( ( invg ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ‘ 𝑆 ) ∈ ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ) |
42 |
40 34 41
|
syl2anc |
⊢ ( 𝜑 → ( ( invg ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ‘ 𝑆 ) ∈ ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ) |
43 |
37 42
|
eqeltrrd |
⊢ ( 𝜑 → ◡ 𝑆 ∈ ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ) |
44 |
|
eqid |
⊢ ( +g ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) = ( +g ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) |
45 |
26 17 44
|
symgov |
⊢ ( ( 𝑃 ∈ ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ∧ ◡ 𝑆 ∈ ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ) → ( 𝑃 ( +g ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ◡ 𝑆 ) = ( 𝑃 ∘ ◡ 𝑆 ) ) |
46 |
26 17 44
|
symgcl |
⊢ ( ( 𝑃 ∈ ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ∧ ◡ 𝑆 ∈ ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ) → ( 𝑃 ( +g ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ◡ 𝑆 ) ∈ ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ) |
47 |
45 46
|
eqeltrrd |
⊢ ( ( 𝑃 ∈ ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ∧ ◡ 𝑆 ∈ ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ) → ( 𝑃 ∘ ◡ 𝑆 ) ∈ ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ) |
48 |
28 43 47
|
syl2anc |
⊢ ( 𝜑 → ( 𝑃 ∘ ◡ 𝑆 ) ∈ ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ) |
49 |
25 15 26 17
|
fzto1st |
⊢ ( 𝐽 ∈ ( 1 ... 𝑁 ) → 𝑄 ∈ ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ) |
50 |
11 49
|
syl |
⊢ ( 𝜑 → 𝑄 ∈ ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ) |
51 |
25 16 26 17
|
fzto1st |
⊢ ( 𝑁 ∈ ( 1 ... 𝑁 ) → 𝑇 ∈ ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ) |
52 |
32 51
|
syl |
⊢ ( 𝜑 → 𝑇 ∈ ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ) |
53 |
26 17 35
|
symginv |
⊢ ( 𝑇 ∈ ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) → ( ( invg ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ‘ 𝑇 ) = ◡ 𝑇 ) |
54 |
52 53
|
syl |
⊢ ( 𝜑 → ( ( invg ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ‘ 𝑇 ) = ◡ 𝑇 ) |
55 |
17 35
|
grpinvcl |
⊢ ( ( ( SymGrp ‘ ( 1 ... 𝑁 ) ) ∈ Grp ∧ 𝑇 ∈ ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ) → ( ( invg ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ‘ 𝑇 ) ∈ ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ) |
56 |
40 52 55
|
syl2anc |
⊢ ( 𝜑 → ( ( invg ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ‘ 𝑇 ) ∈ ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ) |
57 |
54 56
|
eqeltrrd |
⊢ ( 𝜑 → ◡ 𝑇 ∈ ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ) |
58 |
26 17 44
|
symgov |
⊢ ( ( 𝑄 ∈ ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ∧ ◡ 𝑇 ∈ ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ) → ( 𝑄 ( +g ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ◡ 𝑇 ) = ( 𝑄 ∘ ◡ 𝑇 ) ) |
59 |
26 17 44
|
symgcl |
⊢ ( ( 𝑄 ∈ ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ∧ ◡ 𝑇 ∈ ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ) → ( 𝑄 ( +g ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ◡ 𝑇 ) ∈ ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ) |
60 |
58 59
|
eqeltrrd |
⊢ ( ( 𝑄 ∈ ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ∧ ◡ 𝑇 ∈ ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ) → ( 𝑄 ∘ ◡ 𝑇 ) ∈ ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ) |
61 |
50 57 60
|
syl2anc |
⊢ ( 𝜑 → ( 𝑄 ∘ ◡ 𝑇 ) ∈ ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ) |
62 |
26 17
|
symgbasf1o |
⊢ ( 𝑆 ∈ ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) → 𝑆 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) |
63 |
34 62
|
syl |
⊢ ( 𝜑 → 𝑆 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) |
64 |
|
f1of1 |
⊢ ( 𝑆 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) → 𝑆 : ( 1 ... 𝑁 ) –1-1→ ( 1 ... 𝑁 ) ) |
65 |
|
df-f1 |
⊢ ( 𝑆 : ( 1 ... 𝑁 ) –1-1→ ( 1 ... 𝑁 ) ↔ ( 𝑆 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑁 ) ∧ Fun ◡ 𝑆 ) ) |
66 |
65
|
simprbi |
⊢ ( 𝑆 : ( 1 ... 𝑁 ) –1-1→ ( 1 ... 𝑁 ) → Fun ◡ 𝑆 ) |
67 |
63 64 66
|
3syl |
⊢ ( 𝜑 → Fun ◡ 𝑆 ) |
68 |
|
f1ocnv |
⊢ ( 𝑆 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) → ◡ 𝑆 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) |
69 |
|
f1odm |
⊢ ( ◡ 𝑆 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) → dom ◡ 𝑆 = ( 1 ... 𝑁 ) ) |
70 |
63 68 69
|
3syl |
⊢ ( 𝜑 → dom ◡ 𝑆 = ( 1 ... 𝑁 ) ) |
71 |
32 70
|
eleqtrrd |
⊢ ( 𝜑 → 𝑁 ∈ dom ◡ 𝑆 ) |
72 |
|
fvco |
⊢ ( ( Fun ◡ 𝑆 ∧ 𝑁 ∈ dom ◡ 𝑆 ) → ( ( 𝑃 ∘ ◡ 𝑆 ) ‘ 𝑁 ) = ( 𝑃 ‘ ( ◡ 𝑆 ‘ 𝑁 ) ) ) |
73 |
67 71 72
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑃 ∘ ◡ 𝑆 ) ‘ 𝑁 ) = ( 𝑃 ‘ ( ◡ 𝑆 ‘ 𝑁 ) ) ) |
74 |
25 14 26 17
|
fzto1stinvn |
⊢ ( 𝑁 ∈ ( 1 ... 𝑁 ) → ( ◡ 𝑆 ‘ 𝑁 ) = 1 ) |
75 |
32 74
|
syl |
⊢ ( 𝜑 → ( ◡ 𝑆 ‘ 𝑁 ) = 1 ) |
76 |
75
|
fveq2d |
⊢ ( 𝜑 → ( 𝑃 ‘ ( ◡ 𝑆 ‘ 𝑁 ) ) = ( 𝑃 ‘ 1 ) ) |
77 |
25 13
|
fzto1stfv1 |
⊢ ( 𝐼 ∈ ( 1 ... 𝑁 ) → ( 𝑃 ‘ 1 ) = 𝐼 ) |
78 |
10 77
|
syl |
⊢ ( 𝜑 → ( 𝑃 ‘ 1 ) = 𝐼 ) |
79 |
73 76 78
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝑃 ∘ ◡ 𝑆 ) ‘ 𝑁 ) = 𝐼 ) |
80 |
26 17
|
symgbasf1o |
⊢ ( 𝑇 ∈ ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) → 𝑇 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) |
81 |
52 80
|
syl |
⊢ ( 𝜑 → 𝑇 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) |
82 |
|
f1of1 |
⊢ ( 𝑇 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) → 𝑇 : ( 1 ... 𝑁 ) –1-1→ ( 1 ... 𝑁 ) ) |
83 |
|
df-f1 |
⊢ ( 𝑇 : ( 1 ... 𝑁 ) –1-1→ ( 1 ... 𝑁 ) ↔ ( 𝑇 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑁 ) ∧ Fun ◡ 𝑇 ) ) |
84 |
83
|
simprbi |
⊢ ( 𝑇 : ( 1 ... 𝑁 ) –1-1→ ( 1 ... 𝑁 ) → Fun ◡ 𝑇 ) |
85 |
81 82 84
|
3syl |
⊢ ( 𝜑 → Fun ◡ 𝑇 ) |
86 |
|
f1ocnv |
⊢ ( 𝑇 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) → ◡ 𝑇 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) |
87 |
|
f1odm |
⊢ ( ◡ 𝑇 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) → dom ◡ 𝑇 = ( 1 ... 𝑁 ) ) |
88 |
81 86 87
|
3syl |
⊢ ( 𝜑 → dom ◡ 𝑇 = ( 1 ... 𝑁 ) ) |
89 |
32 88
|
eleqtrrd |
⊢ ( 𝜑 → 𝑁 ∈ dom ◡ 𝑇 ) |
90 |
|
fvco |
⊢ ( ( Fun ◡ 𝑇 ∧ 𝑁 ∈ dom ◡ 𝑇 ) → ( ( 𝑄 ∘ ◡ 𝑇 ) ‘ 𝑁 ) = ( 𝑄 ‘ ( ◡ 𝑇 ‘ 𝑁 ) ) ) |
91 |
85 89 90
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑄 ∘ ◡ 𝑇 ) ‘ 𝑁 ) = ( 𝑄 ‘ ( ◡ 𝑇 ‘ 𝑁 ) ) ) |
92 |
25 16 26 17
|
fzto1stinvn |
⊢ ( 𝑁 ∈ ( 1 ... 𝑁 ) → ( ◡ 𝑇 ‘ 𝑁 ) = 1 ) |
93 |
32 92
|
syl |
⊢ ( 𝜑 → ( ◡ 𝑇 ‘ 𝑁 ) = 1 ) |
94 |
93
|
fveq2d |
⊢ ( 𝜑 → ( 𝑄 ‘ ( ◡ 𝑇 ‘ 𝑁 ) ) = ( 𝑄 ‘ 1 ) ) |
95 |
25 15
|
fzto1stfv1 |
⊢ ( 𝐽 ∈ ( 1 ... 𝑁 ) → ( 𝑄 ‘ 1 ) = 𝐽 ) |
96 |
11 95
|
syl |
⊢ ( 𝜑 → ( 𝑄 ‘ 1 ) = 𝐽 ) |
97 |
91 94 96
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝑄 ∘ ◡ 𝑇 ) ‘ 𝑁 ) = 𝐽 ) |
98 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
99 |
9 98
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
100 |
2 1
|
minmar1cl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐼 ∈ ( 1 ... 𝑁 ) ∧ 𝐽 ∈ ( 1 ... 𝑁 ) ) ) → ( 𝐼 ( ( ( 1 ... 𝑁 ) minMatR1 𝑅 ) ‘ 𝑀 ) 𝐽 ) ∈ 𝐵 ) |
101 |
99 12 10 11 100
|
syl22anc |
⊢ ( 𝜑 → ( 𝐼 ( ( ( 1 ... 𝑁 ) minMatR1 𝑅 ) ‘ 𝑀 ) 𝐽 ) ∈ 𝐵 ) |
102 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 24 101
|
madjusmdetlem3 |
⊢ ( 𝜑 → ( 𝐼 ( subMat1 ‘ ( 𝐼 ( ( ( 1 ... 𝑁 ) minMatR1 𝑅 ) ‘ 𝑀 ) 𝐽 ) ) 𝐽 ) = ( 𝑁 ( subMat1 ‘ ( 𝑘 ∈ ( 1 ... 𝑁 ) , 𝑙 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 𝑃 ∘ ◡ 𝑆 ) ‘ 𝑘 ) ( 𝐼 ( ( ( 1 ... 𝑁 ) minMatR1 𝑅 ) ‘ 𝑀 ) 𝐽 ) ( ( 𝑄 ∘ ◡ 𝑇 ) ‘ 𝑙 ) ) ) ) 𝑁 ) ) |
103 |
1 2 3 4 5 6 7 8 9 10 11 12 17 18 19 24 48 61 79 97 102
|
madjusmdetlem1 |
⊢ ( 𝜑 → ( 𝐽 ( 𝐾 ‘ 𝑀 ) 𝐼 ) = ( ( 𝑍 ‘ ( ( ( pmSgn ‘ ( 1 ... 𝑁 ) ) ‘ ( 𝑃 ∘ ◡ 𝑆 ) ) · ( ( pmSgn ‘ ( 1 ... 𝑁 ) ) ‘ ( 𝑄 ∘ ◡ 𝑇 ) ) ) ) · ( 𝐸 ‘ ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝐽 ) ) ) ) |
104 |
26 18 17
|
psgnco |
⊢ ( ( ( 1 ... 𝑁 ) ∈ Fin ∧ 𝑃 ∈ ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ∧ ◡ 𝑆 ∈ ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ) → ( ( pmSgn ‘ ( 1 ... 𝑁 ) ) ‘ ( 𝑃 ∘ ◡ 𝑆 ) ) = ( ( ( pmSgn ‘ ( 1 ... 𝑁 ) ) ‘ 𝑃 ) · ( ( pmSgn ‘ ( 1 ... 𝑁 ) ) ‘ ◡ 𝑆 ) ) ) |
105 |
38 28 43 104
|
syl3anc |
⊢ ( 𝜑 → ( ( pmSgn ‘ ( 1 ... 𝑁 ) ) ‘ ( 𝑃 ∘ ◡ 𝑆 ) ) = ( ( ( pmSgn ‘ ( 1 ... 𝑁 ) ) ‘ 𝑃 ) · ( ( pmSgn ‘ ( 1 ... 𝑁 ) ) ‘ ◡ 𝑆 ) ) ) |
106 |
25 13 26 17 18
|
psgnfzto1st |
⊢ ( 𝐼 ∈ ( 1 ... 𝑁 ) → ( ( pmSgn ‘ ( 1 ... 𝑁 ) ) ‘ 𝑃 ) = ( - 1 ↑ ( 𝐼 + 1 ) ) ) |
107 |
10 106
|
syl |
⊢ ( 𝜑 → ( ( pmSgn ‘ ( 1 ... 𝑁 ) ) ‘ 𝑃 ) = ( - 1 ↑ ( 𝐼 + 1 ) ) ) |
108 |
26 18 17
|
psgninv |
⊢ ( ( ( 1 ... 𝑁 ) ∈ Fin ∧ 𝑆 ∈ ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ) → ( ( pmSgn ‘ ( 1 ... 𝑁 ) ) ‘ ◡ 𝑆 ) = ( ( pmSgn ‘ ( 1 ... 𝑁 ) ) ‘ 𝑆 ) ) |
109 |
38 34 108
|
syl2anc |
⊢ ( 𝜑 → ( ( pmSgn ‘ ( 1 ... 𝑁 ) ) ‘ ◡ 𝑆 ) = ( ( pmSgn ‘ ( 1 ... 𝑁 ) ) ‘ 𝑆 ) ) |
110 |
25 14 26 17 18
|
psgnfzto1st |
⊢ ( 𝑁 ∈ ( 1 ... 𝑁 ) → ( ( pmSgn ‘ ( 1 ... 𝑁 ) ) ‘ 𝑆 ) = ( - 1 ↑ ( 𝑁 + 1 ) ) ) |
111 |
32 110
|
syl |
⊢ ( 𝜑 → ( ( pmSgn ‘ ( 1 ... 𝑁 ) ) ‘ 𝑆 ) = ( - 1 ↑ ( 𝑁 + 1 ) ) ) |
112 |
109 111
|
eqtrd |
⊢ ( 𝜑 → ( ( pmSgn ‘ ( 1 ... 𝑁 ) ) ‘ ◡ 𝑆 ) = ( - 1 ↑ ( 𝑁 + 1 ) ) ) |
113 |
107 112
|
oveq12d |
⊢ ( 𝜑 → ( ( ( pmSgn ‘ ( 1 ... 𝑁 ) ) ‘ 𝑃 ) · ( ( pmSgn ‘ ( 1 ... 𝑁 ) ) ‘ ◡ 𝑆 ) ) = ( ( - 1 ↑ ( 𝐼 + 1 ) ) · ( - 1 ↑ ( 𝑁 + 1 ) ) ) ) |
114 |
105 113
|
eqtrd |
⊢ ( 𝜑 → ( ( pmSgn ‘ ( 1 ... 𝑁 ) ) ‘ ( 𝑃 ∘ ◡ 𝑆 ) ) = ( ( - 1 ↑ ( 𝐼 + 1 ) ) · ( - 1 ↑ ( 𝑁 + 1 ) ) ) ) |
115 |
26 18 17
|
psgnco |
⊢ ( ( ( 1 ... 𝑁 ) ∈ Fin ∧ 𝑄 ∈ ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ∧ ◡ 𝑇 ∈ ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ) → ( ( pmSgn ‘ ( 1 ... 𝑁 ) ) ‘ ( 𝑄 ∘ ◡ 𝑇 ) ) = ( ( ( pmSgn ‘ ( 1 ... 𝑁 ) ) ‘ 𝑄 ) · ( ( pmSgn ‘ ( 1 ... 𝑁 ) ) ‘ ◡ 𝑇 ) ) ) |
116 |
38 50 57 115
|
syl3anc |
⊢ ( 𝜑 → ( ( pmSgn ‘ ( 1 ... 𝑁 ) ) ‘ ( 𝑄 ∘ ◡ 𝑇 ) ) = ( ( ( pmSgn ‘ ( 1 ... 𝑁 ) ) ‘ 𝑄 ) · ( ( pmSgn ‘ ( 1 ... 𝑁 ) ) ‘ ◡ 𝑇 ) ) ) |
117 |
25 15 26 17 18
|
psgnfzto1st |
⊢ ( 𝐽 ∈ ( 1 ... 𝑁 ) → ( ( pmSgn ‘ ( 1 ... 𝑁 ) ) ‘ 𝑄 ) = ( - 1 ↑ ( 𝐽 + 1 ) ) ) |
118 |
11 117
|
syl |
⊢ ( 𝜑 → ( ( pmSgn ‘ ( 1 ... 𝑁 ) ) ‘ 𝑄 ) = ( - 1 ↑ ( 𝐽 + 1 ) ) ) |
119 |
26 18 17
|
psgninv |
⊢ ( ( ( 1 ... 𝑁 ) ∈ Fin ∧ 𝑇 ∈ ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) ) → ( ( pmSgn ‘ ( 1 ... 𝑁 ) ) ‘ ◡ 𝑇 ) = ( ( pmSgn ‘ ( 1 ... 𝑁 ) ) ‘ 𝑇 ) ) |
120 |
38 52 119
|
syl2anc |
⊢ ( 𝜑 → ( ( pmSgn ‘ ( 1 ... 𝑁 ) ) ‘ ◡ 𝑇 ) = ( ( pmSgn ‘ ( 1 ... 𝑁 ) ) ‘ 𝑇 ) ) |
121 |
25 16 26 17 18
|
psgnfzto1st |
⊢ ( 𝑁 ∈ ( 1 ... 𝑁 ) → ( ( pmSgn ‘ ( 1 ... 𝑁 ) ) ‘ 𝑇 ) = ( - 1 ↑ ( 𝑁 + 1 ) ) ) |
122 |
32 121
|
syl |
⊢ ( 𝜑 → ( ( pmSgn ‘ ( 1 ... 𝑁 ) ) ‘ 𝑇 ) = ( - 1 ↑ ( 𝑁 + 1 ) ) ) |
123 |
120 122
|
eqtrd |
⊢ ( 𝜑 → ( ( pmSgn ‘ ( 1 ... 𝑁 ) ) ‘ ◡ 𝑇 ) = ( - 1 ↑ ( 𝑁 + 1 ) ) ) |
124 |
118 123
|
oveq12d |
⊢ ( 𝜑 → ( ( ( pmSgn ‘ ( 1 ... 𝑁 ) ) ‘ 𝑄 ) · ( ( pmSgn ‘ ( 1 ... 𝑁 ) ) ‘ ◡ 𝑇 ) ) = ( ( - 1 ↑ ( 𝐽 + 1 ) ) · ( - 1 ↑ ( 𝑁 + 1 ) ) ) ) |
125 |
116 124
|
eqtrd |
⊢ ( 𝜑 → ( ( pmSgn ‘ ( 1 ... 𝑁 ) ) ‘ ( 𝑄 ∘ ◡ 𝑇 ) ) = ( ( - 1 ↑ ( 𝐽 + 1 ) ) · ( - 1 ↑ ( 𝑁 + 1 ) ) ) ) |
126 |
114 125
|
oveq12d |
⊢ ( 𝜑 → ( ( ( pmSgn ‘ ( 1 ... 𝑁 ) ) ‘ ( 𝑃 ∘ ◡ 𝑆 ) ) · ( ( pmSgn ‘ ( 1 ... 𝑁 ) ) ‘ ( 𝑄 ∘ ◡ 𝑇 ) ) ) = ( ( ( - 1 ↑ ( 𝐼 + 1 ) ) · ( - 1 ↑ ( 𝑁 + 1 ) ) ) · ( ( - 1 ↑ ( 𝐽 + 1 ) ) · ( - 1 ↑ ( 𝑁 + 1 ) ) ) ) ) |
127 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
128 |
127
|
negcld |
⊢ ( 𝜑 → - 1 ∈ ℂ ) |
129 |
|
fz1ssnn |
⊢ ( 1 ... 𝑁 ) ⊆ ℕ |
130 |
129 10
|
sselid |
⊢ ( 𝜑 → 𝐼 ∈ ℕ ) |
131 |
130
|
nnnn0d |
⊢ ( 𝜑 → 𝐼 ∈ ℕ0 ) |
132 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
133 |
132
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℕ0 ) |
134 |
131 133
|
nn0addcld |
⊢ ( 𝜑 → ( 𝐼 + 1 ) ∈ ℕ0 ) |
135 |
128 134
|
expcld |
⊢ ( 𝜑 → ( - 1 ↑ ( 𝐼 + 1 ) ) ∈ ℂ ) |
136 |
8
|
nnnn0d |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
137 |
136 133
|
nn0addcld |
⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ℕ0 ) |
138 |
128 137
|
expcld |
⊢ ( 𝜑 → ( - 1 ↑ ( 𝑁 + 1 ) ) ∈ ℂ ) |
139 |
129 11
|
sselid |
⊢ ( 𝜑 → 𝐽 ∈ ℕ ) |
140 |
139
|
nnnn0d |
⊢ ( 𝜑 → 𝐽 ∈ ℕ0 ) |
141 |
140 133
|
nn0addcld |
⊢ ( 𝜑 → ( 𝐽 + 1 ) ∈ ℕ0 ) |
142 |
128 141
|
expcld |
⊢ ( 𝜑 → ( - 1 ↑ ( 𝐽 + 1 ) ) ∈ ℂ ) |
143 |
135 138 142 138
|
mul4d |
⊢ ( 𝜑 → ( ( ( - 1 ↑ ( 𝐼 + 1 ) ) · ( - 1 ↑ ( 𝑁 + 1 ) ) ) · ( ( - 1 ↑ ( 𝐽 + 1 ) ) · ( - 1 ↑ ( 𝑁 + 1 ) ) ) ) = ( ( ( - 1 ↑ ( 𝐼 + 1 ) ) · ( - 1 ↑ ( 𝐽 + 1 ) ) ) · ( ( - 1 ↑ ( 𝑁 + 1 ) ) · ( - 1 ↑ ( 𝑁 + 1 ) ) ) ) ) |
144 |
128 141 134
|
expaddd |
⊢ ( 𝜑 → ( - 1 ↑ ( ( 𝐼 + 1 ) + ( 𝐽 + 1 ) ) ) = ( ( - 1 ↑ ( 𝐼 + 1 ) ) · ( - 1 ↑ ( 𝐽 + 1 ) ) ) ) |
145 |
130
|
nncnd |
⊢ ( 𝜑 → 𝐼 ∈ ℂ ) |
146 |
139
|
nncnd |
⊢ ( 𝜑 → 𝐽 ∈ ℂ ) |
147 |
145 127 146 127
|
add4d |
⊢ ( 𝜑 → ( ( 𝐼 + 1 ) + ( 𝐽 + 1 ) ) = ( ( 𝐼 + 𝐽 ) + ( 1 + 1 ) ) ) |
148 |
|
1p1e2 |
⊢ ( 1 + 1 ) = 2 |
149 |
148
|
oveq2i |
⊢ ( ( 𝐼 + 𝐽 ) + ( 1 + 1 ) ) = ( ( 𝐼 + 𝐽 ) + 2 ) |
150 |
147 149
|
eqtrdi |
⊢ ( 𝜑 → ( ( 𝐼 + 1 ) + ( 𝐽 + 1 ) ) = ( ( 𝐼 + 𝐽 ) + 2 ) ) |
151 |
150
|
oveq2d |
⊢ ( 𝜑 → ( - 1 ↑ ( ( 𝐼 + 1 ) + ( 𝐽 + 1 ) ) ) = ( - 1 ↑ ( ( 𝐼 + 𝐽 ) + 2 ) ) ) |
152 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
153 |
152
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℕ0 ) |
154 |
131 140
|
nn0addcld |
⊢ ( 𝜑 → ( 𝐼 + 𝐽 ) ∈ ℕ0 ) |
155 |
128 153 154
|
expaddd |
⊢ ( 𝜑 → ( - 1 ↑ ( ( 𝐼 + 𝐽 ) + 2 ) ) = ( ( - 1 ↑ ( 𝐼 + 𝐽 ) ) · ( - 1 ↑ 2 ) ) ) |
156 |
|
neg1sqe1 |
⊢ ( - 1 ↑ 2 ) = 1 |
157 |
156
|
oveq2i |
⊢ ( ( - 1 ↑ ( 𝐼 + 𝐽 ) ) · ( - 1 ↑ 2 ) ) = ( ( - 1 ↑ ( 𝐼 + 𝐽 ) ) · 1 ) |
158 |
155 157
|
eqtrdi |
⊢ ( 𝜑 → ( - 1 ↑ ( ( 𝐼 + 𝐽 ) + 2 ) ) = ( ( - 1 ↑ ( 𝐼 + 𝐽 ) ) · 1 ) ) |
159 |
128 154
|
expcld |
⊢ ( 𝜑 → ( - 1 ↑ ( 𝐼 + 𝐽 ) ) ∈ ℂ ) |
160 |
159
|
mulid1d |
⊢ ( 𝜑 → ( ( - 1 ↑ ( 𝐼 + 𝐽 ) ) · 1 ) = ( - 1 ↑ ( 𝐼 + 𝐽 ) ) ) |
161 |
151 158 160
|
3eqtrd |
⊢ ( 𝜑 → ( - 1 ↑ ( ( 𝐼 + 1 ) + ( 𝐽 + 1 ) ) ) = ( - 1 ↑ ( 𝐼 + 𝐽 ) ) ) |
162 |
144 161
|
eqtr3d |
⊢ ( 𝜑 → ( ( - 1 ↑ ( 𝐼 + 1 ) ) · ( - 1 ↑ ( 𝐽 + 1 ) ) ) = ( - 1 ↑ ( 𝐼 + 𝐽 ) ) ) |
163 |
137
|
nn0zd |
⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ℤ ) |
164 |
|
m1expcl2 |
⊢ ( ( 𝑁 + 1 ) ∈ ℤ → ( - 1 ↑ ( 𝑁 + 1 ) ) ∈ { - 1 , 1 } ) |
165 |
|
1neg1t1neg1 |
⊢ ( ( - 1 ↑ ( 𝑁 + 1 ) ) ∈ { - 1 , 1 } → ( ( - 1 ↑ ( 𝑁 + 1 ) ) · ( - 1 ↑ ( 𝑁 + 1 ) ) ) = 1 ) |
166 |
163 164 165
|
3syl |
⊢ ( 𝜑 → ( ( - 1 ↑ ( 𝑁 + 1 ) ) · ( - 1 ↑ ( 𝑁 + 1 ) ) ) = 1 ) |
167 |
162 166
|
oveq12d |
⊢ ( 𝜑 → ( ( ( - 1 ↑ ( 𝐼 + 1 ) ) · ( - 1 ↑ ( 𝐽 + 1 ) ) ) · ( ( - 1 ↑ ( 𝑁 + 1 ) ) · ( - 1 ↑ ( 𝑁 + 1 ) ) ) ) = ( ( - 1 ↑ ( 𝐼 + 𝐽 ) ) · 1 ) ) |
168 |
143 167 160
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( - 1 ↑ ( 𝐼 + 1 ) ) · ( - 1 ↑ ( 𝑁 + 1 ) ) ) · ( ( - 1 ↑ ( 𝐽 + 1 ) ) · ( - 1 ↑ ( 𝑁 + 1 ) ) ) ) = ( - 1 ↑ ( 𝐼 + 𝐽 ) ) ) |
169 |
126 168
|
eqtrd |
⊢ ( 𝜑 → ( ( ( pmSgn ‘ ( 1 ... 𝑁 ) ) ‘ ( 𝑃 ∘ ◡ 𝑆 ) ) · ( ( pmSgn ‘ ( 1 ... 𝑁 ) ) ‘ ( 𝑄 ∘ ◡ 𝑇 ) ) ) = ( - 1 ↑ ( 𝐼 + 𝐽 ) ) ) |
170 |
169
|
fveq2d |
⊢ ( 𝜑 → ( 𝑍 ‘ ( ( ( pmSgn ‘ ( 1 ... 𝑁 ) ) ‘ ( 𝑃 ∘ ◡ 𝑆 ) ) · ( ( pmSgn ‘ ( 1 ... 𝑁 ) ) ‘ ( 𝑄 ∘ ◡ 𝑇 ) ) ) ) = ( 𝑍 ‘ ( - 1 ↑ ( 𝐼 + 𝐽 ) ) ) ) |
171 |
170
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑍 ‘ ( ( ( pmSgn ‘ ( 1 ... 𝑁 ) ) ‘ ( 𝑃 ∘ ◡ 𝑆 ) ) · ( ( pmSgn ‘ ( 1 ... 𝑁 ) ) ‘ ( 𝑄 ∘ ◡ 𝑇 ) ) ) ) · ( 𝐸 ‘ ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝐽 ) ) ) = ( ( 𝑍 ‘ ( - 1 ↑ ( 𝐼 + 𝐽 ) ) ) · ( 𝐸 ‘ ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝐽 ) ) ) ) |
172 |
103 171
|
eqtrd |
⊢ ( 𝜑 → ( 𝐽 ( 𝐾 ‘ 𝑀 ) 𝐼 ) = ( ( 𝑍 ‘ ( - 1 ↑ ( 𝐼 + 𝐽 ) ) ) · ( 𝐸 ‘ ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝐽 ) ) ) ) |