| Step | Hyp | Ref | Expression | 
						
							| 1 |  | madjusmdet.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 2 |  | madjusmdet.a | ⊢ 𝐴  =  ( ( 1 ... 𝑁 )  Mat  𝑅 ) | 
						
							| 3 |  | madjusmdet.d | ⊢ 𝐷  =  ( ( 1 ... 𝑁 )  maDet  𝑅 ) | 
						
							| 4 |  | madjusmdet.k | ⊢ 𝐾  =  ( ( 1 ... 𝑁 )  maAdju  𝑅 ) | 
						
							| 5 |  | madjusmdet.t | ⊢  ·   =  ( .r ‘ 𝑅 ) | 
						
							| 6 |  | madjusmdet.z | ⊢ 𝑍  =  ( ℤRHom ‘ 𝑅 ) | 
						
							| 7 |  | madjusmdet.e | ⊢ 𝐸  =  ( ( 1 ... ( 𝑁  −  1 ) )  maDet  𝑅 ) | 
						
							| 8 |  | madjusmdet.n | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 9 |  | madjusmdet.r | ⊢ ( 𝜑  →  𝑅  ∈  CRing ) | 
						
							| 10 |  | madjusmdet.i | ⊢ ( 𝜑  →  𝐼  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 11 |  | madjusmdet.j | ⊢ ( 𝜑  →  𝐽  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 12 |  | madjusmdet.m | ⊢ ( 𝜑  →  𝑀  ∈  𝐵 ) | 
						
							| 13 |  | madjusmdetlem1.g | ⊢ 𝐺  =  ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) | 
						
							| 14 |  | madjusmdetlem1.s | ⊢ 𝑆  =  ( pmSgn ‘ ( 1 ... 𝑁 ) ) | 
						
							| 15 |  | madjusmdetlem1.u | ⊢ 𝑈  =  ( 𝐼 ( ( ( 1 ... 𝑁 )  minMatR1  𝑅 ) ‘ 𝑀 ) 𝐽 ) | 
						
							| 16 |  | madjusmdetlem1.w | ⊢ 𝑊  =  ( 𝑖  ∈  ( 1 ... 𝑁 ) ,  𝑗  ∈  ( 1 ... 𝑁 )  ↦  ( ( 𝑃 ‘ 𝑖 ) 𝑈 ( 𝑄 ‘ 𝑗 ) ) ) | 
						
							| 17 |  | madjusmdetlem1.p | ⊢ ( 𝜑  →  𝑃  ∈  𝐺 ) | 
						
							| 18 |  | madjusmdetlem1.q | ⊢ ( 𝜑  →  𝑄  ∈  𝐺 ) | 
						
							| 19 |  | madjusmdetlem1.1 | ⊢ ( 𝜑  →  ( 𝑃 ‘ 𝑁 )  =  𝐼 ) | 
						
							| 20 |  | madjusmdetlem1.2 | ⊢ ( 𝜑  →  ( 𝑄 ‘ 𝑁 )  =  𝐽 ) | 
						
							| 21 |  | madjusmdetlem1.3 | ⊢ ( 𝜑  →  ( 𝐼 ( subMat1 ‘ 𝑈 ) 𝐽 )  =  ( 𝑁 ( subMat1 ‘ 𝑊 ) 𝑁 ) ) | 
						
							| 22 | 2 1 3 4 | maducoevalmin1 | ⊢ ( ( 𝑀  ∈  𝐵  ∧  𝐽  ∈  ( 1 ... 𝑁 )  ∧  𝐼  ∈  ( 1 ... 𝑁 ) )  →  ( 𝐽 ( 𝐾 ‘ 𝑀 ) 𝐼 )  =  ( 𝐷 ‘ ( 𝐼 ( ( ( 1 ... 𝑁 )  minMatR1  𝑅 ) ‘ 𝑀 ) 𝐽 ) ) ) | 
						
							| 23 | 12 11 10 22 | syl3anc | ⊢ ( 𝜑  →  ( 𝐽 ( 𝐾 ‘ 𝑀 ) 𝐼 )  =  ( 𝐷 ‘ ( 𝐼 ( ( ( 1 ... 𝑁 )  minMatR1  𝑅 ) ‘ 𝑀 ) 𝐽 ) ) ) | 
						
							| 24 | 15 | fveq2i | ⊢ ( 𝐷 ‘ 𝑈 )  =  ( 𝐷 ‘ ( 𝐼 ( ( ( 1 ... 𝑁 )  minMatR1  𝑅 ) ‘ 𝑀 ) 𝐽 ) ) | 
						
							| 25 | 23 24 | eqtr4di | ⊢ ( 𝜑  →  ( 𝐽 ( 𝐾 ‘ 𝑀 ) 𝐼 )  =  ( 𝐷 ‘ 𝑈 ) ) | 
						
							| 26 |  | fzfid | ⊢ ( 𝜑  →  ( 1 ... 𝑁 )  ∈  Fin ) | 
						
							| 27 |  | crngring | ⊢ ( 𝑅  ∈  CRing  →  𝑅  ∈  Ring ) | 
						
							| 28 | 9 27 | syl | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 29 | 2 1 | minmar1cl | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ∈  ( 1 ... 𝑁 )  ∧  𝐽  ∈  ( 1 ... 𝑁 ) ) )  →  ( 𝐼 ( ( ( 1 ... 𝑁 )  minMatR1  𝑅 ) ‘ 𝑀 ) 𝐽 )  ∈  𝐵 ) | 
						
							| 30 | 28 12 10 11 29 | syl22anc | ⊢ ( 𝜑  →  ( 𝐼 ( ( ( 1 ... 𝑁 )  minMatR1  𝑅 ) ‘ 𝑀 ) 𝐽 )  ∈  𝐵 ) | 
						
							| 31 | 15 30 | eqeltrid | ⊢ ( 𝜑  →  𝑈  ∈  𝐵 ) | 
						
							| 32 | 2 1 3 13 14 6 5 16 9 26 31 17 18 | mdetpmtr12 | ⊢ ( 𝜑  →  ( 𝐷 ‘ 𝑈 )  =  ( ( 𝑍 ‘ ( ( 𝑆 ‘ 𝑃 )  ·  ( 𝑆 ‘ 𝑄 ) ) )  ·  ( 𝐷 ‘ 𝑊 ) ) ) | 
						
							| 33 |  | simplr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑁 )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  ∧  𝑖  =  𝑁 )  ∧  𝑗  =  𝑁 )  →  𝑖  =  𝑁 ) | 
						
							| 34 | 33 | fveq2d | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑁 )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  ∧  𝑖  =  𝑁 )  ∧  𝑗  =  𝑁 )  →  ( 𝑃 ‘ 𝑖 )  =  ( 𝑃 ‘ 𝑁 ) ) | 
						
							| 35 | 19 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑁 )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  ( 𝑃 ‘ 𝑁 )  =  𝐼 ) | 
						
							| 36 | 35 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑁 )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  ∧  𝑖  =  𝑁 )  ∧  𝑗  =  𝑁 )  →  ( 𝑃 ‘ 𝑁 )  =  𝐼 ) | 
						
							| 37 | 34 36 | eqtrd | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑁 )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  ∧  𝑖  =  𝑁 )  ∧  𝑗  =  𝑁 )  →  ( 𝑃 ‘ 𝑖 )  =  𝐼 ) | 
						
							| 38 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑁 )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  ∧  𝑖  =  𝑁 )  ∧  𝑗  =  𝑁 )  →  𝑗  =  𝑁 ) | 
						
							| 39 | 38 | fveq2d | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑁 )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  ∧  𝑖  =  𝑁 )  ∧  𝑗  =  𝑁 )  →  ( 𝑄 ‘ 𝑗 )  =  ( 𝑄 ‘ 𝑁 ) ) | 
						
							| 40 | 20 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑁 )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  ( 𝑄 ‘ 𝑁 )  =  𝐽 ) | 
						
							| 41 | 40 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑁 )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  ∧  𝑖  =  𝑁 )  ∧  𝑗  =  𝑁 )  →  ( 𝑄 ‘ 𝑁 )  =  𝐽 ) | 
						
							| 42 | 39 41 | eqtrd | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑁 )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  ∧  𝑖  =  𝑁 )  ∧  𝑗  =  𝑁 )  →  ( 𝑄 ‘ 𝑗 )  =  𝐽 ) | 
						
							| 43 | 37 42 | oveq12d | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑁 )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  ∧  𝑖  =  𝑁 )  ∧  𝑗  =  𝑁 )  →  ( ( 𝑃 ‘ 𝑖 ) ( 𝐼 ( ( ( 1 ... 𝑁 )  minMatR1  𝑅 ) ‘ 𝑀 ) 𝐽 ) ( 𝑄 ‘ 𝑗 ) )  =  ( 𝐼 ( 𝐼 ( ( ( 1 ... 𝑁 )  minMatR1  𝑅 ) ‘ 𝑀 ) 𝐽 ) 𝐽 ) ) | 
						
							| 44 | 12 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑁 )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  𝑀  ∈  𝐵 ) | 
						
							| 45 | 44 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑁 )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  ∧  𝑖  =  𝑁 )  ∧  𝑗  =  𝑁 )  →  𝑀  ∈  𝐵 ) | 
						
							| 46 | 10 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑁 )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  𝐼  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 47 | 46 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑁 )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  ∧  𝑖  =  𝑁 )  ∧  𝑗  =  𝑁 )  →  𝐼  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 48 | 11 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑁 )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  𝐽  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 49 | 48 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑁 )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  ∧  𝑖  =  𝑁 )  ∧  𝑗  =  𝑁 )  →  𝐽  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 50 |  | eqid | ⊢ ( ( 1 ... 𝑁 )  minMatR1  𝑅 )  =  ( ( 1 ... 𝑁 )  minMatR1  𝑅 ) | 
						
							| 51 |  | eqid | ⊢ ( 1r ‘ 𝑅 )  =  ( 1r ‘ 𝑅 ) | 
						
							| 52 |  | eqid | ⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 ) | 
						
							| 53 | 2 1 50 51 52 | minmar1eval | ⊢ ( ( 𝑀  ∈  𝐵  ∧  ( 𝐼  ∈  ( 1 ... 𝑁 )  ∧  𝐽  ∈  ( 1 ... 𝑁 ) )  ∧  ( 𝐼  ∈  ( 1 ... 𝑁 )  ∧  𝐽  ∈  ( 1 ... 𝑁 ) ) )  →  ( 𝐼 ( 𝐼 ( ( ( 1 ... 𝑁 )  minMatR1  𝑅 ) ‘ 𝑀 ) 𝐽 ) 𝐽 )  =  if ( 𝐼  =  𝐼 ,  if ( 𝐽  =  𝐽 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) ,  ( 𝐼 𝑀 𝐽 ) ) ) | 
						
							| 54 | 45 47 49 47 49 53 | syl122anc | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑁 )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  ∧  𝑖  =  𝑁 )  ∧  𝑗  =  𝑁 )  →  ( 𝐼 ( 𝐼 ( ( ( 1 ... 𝑁 )  minMatR1  𝑅 ) ‘ 𝑀 ) 𝐽 ) 𝐽 )  =  if ( 𝐼  =  𝐼 ,  if ( 𝐽  =  𝐽 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) ,  ( 𝐼 𝑀 𝐽 ) ) ) | 
						
							| 55 |  | eqid | ⊢ 𝐼  =  𝐼 | 
						
							| 56 | 55 | iftruei | ⊢ if ( 𝐼  =  𝐼 ,  if ( 𝐽  =  𝐽 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) ,  ( 𝐼 𝑀 𝐽 ) )  =  if ( 𝐽  =  𝐽 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) | 
						
							| 57 |  | eqid | ⊢ 𝐽  =  𝐽 | 
						
							| 58 | 57 | iftruei | ⊢ if ( 𝐽  =  𝐽 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) )  =  ( 1r ‘ 𝑅 ) | 
						
							| 59 | 56 58 | eqtri | ⊢ if ( 𝐼  =  𝐼 ,  if ( 𝐽  =  𝐽 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) ,  ( 𝐼 𝑀 𝐽 ) )  =  ( 1r ‘ 𝑅 ) | 
						
							| 60 | 59 | a1i | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑁 )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  ∧  𝑖  =  𝑁 )  ∧  𝑗  =  𝑁 )  →  if ( 𝐼  =  𝐼 ,  if ( 𝐽  =  𝐽 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) ,  ( 𝐼 𝑀 𝐽 ) )  =  ( 1r ‘ 𝑅 ) ) | 
						
							| 61 | 43 54 60 | 3eqtrrd | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑁 )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  ∧  𝑖  =  𝑁 )  ∧  𝑗  =  𝑁 )  →  ( 1r ‘ 𝑅 )  =  ( ( 𝑃 ‘ 𝑖 ) ( 𝐼 ( ( ( 1 ... 𝑁 )  minMatR1  𝑅 ) ‘ 𝑀 ) 𝐽 ) ( 𝑄 ‘ 𝑗 ) ) ) | 
						
							| 62 |  | simplr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑁 )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  ∧  𝑖  =  𝑁 )  ∧  ¬  𝑗  =  𝑁 )  →  𝑖  =  𝑁 ) | 
						
							| 63 | 62 | fveq2d | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑁 )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  ∧  𝑖  =  𝑁 )  ∧  ¬  𝑗  =  𝑁 )  →  ( 𝑃 ‘ 𝑖 )  =  ( 𝑃 ‘ 𝑁 ) ) | 
						
							| 64 | 35 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑁 )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  ∧  𝑖  =  𝑁 )  ∧  ¬  𝑗  =  𝑁 )  →  ( 𝑃 ‘ 𝑁 )  =  𝐼 ) | 
						
							| 65 | 63 64 | eqtrd | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑁 )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  ∧  𝑖  =  𝑁 )  ∧  ¬  𝑗  =  𝑁 )  →  ( 𝑃 ‘ 𝑖 )  =  𝐼 ) | 
						
							| 66 | 65 | oveq1d | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑁 )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  ∧  𝑖  =  𝑁 )  ∧  ¬  𝑗  =  𝑁 )  →  ( ( 𝑃 ‘ 𝑖 ) ( 𝐼 ( ( ( 1 ... 𝑁 )  minMatR1  𝑅 ) ‘ 𝑀 ) 𝐽 ) ( 𝑄 ‘ 𝑗 ) )  =  ( 𝐼 ( 𝐼 ( ( ( 1 ... 𝑁 )  minMatR1  𝑅 ) ‘ 𝑀 ) 𝐽 ) ( 𝑄 ‘ 𝑗 ) ) ) | 
						
							| 67 | 44 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑁 )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  ∧  𝑖  =  𝑁 )  ∧  ¬  𝑗  =  𝑁 )  →  𝑀  ∈  𝐵 ) | 
						
							| 68 | 46 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑁 )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  ∧  𝑖  =  𝑁 )  ∧  ¬  𝑗  =  𝑁 )  →  𝐼  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 69 | 48 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑁 )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  ∧  𝑖  =  𝑁 )  ∧  ¬  𝑗  =  𝑁 )  →  𝐽  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 70 | 18 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑁 )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  𝑄  ∈  𝐺 ) | 
						
							| 71 |  | simp3 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑁 )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  𝑗  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 72 |  | eqid | ⊢ ( SymGrp ‘ ( 1 ... 𝑁 ) )  =  ( SymGrp ‘ ( 1 ... 𝑁 ) ) | 
						
							| 73 | 72 13 | symgfv | ⊢ ( ( 𝑄  ∈  𝐺  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  ( 𝑄 ‘ 𝑗 )  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 74 | 70 71 73 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑁 )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  ( 𝑄 ‘ 𝑗 )  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 75 | 74 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑁 )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  ∧  𝑖  =  𝑁 )  ∧  ¬  𝑗  =  𝑁 )  →  ( 𝑄 ‘ 𝑗 )  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 76 | 2 1 50 51 52 | minmar1eval | ⊢ ( ( 𝑀  ∈  𝐵  ∧  ( 𝐼  ∈  ( 1 ... 𝑁 )  ∧  𝐽  ∈  ( 1 ... 𝑁 ) )  ∧  ( 𝐼  ∈  ( 1 ... 𝑁 )  ∧  ( 𝑄 ‘ 𝑗 )  ∈  ( 1 ... 𝑁 ) ) )  →  ( 𝐼 ( 𝐼 ( ( ( 1 ... 𝑁 )  minMatR1  𝑅 ) ‘ 𝑀 ) 𝐽 ) ( 𝑄 ‘ 𝑗 ) )  =  if ( 𝐼  =  𝐼 ,  if ( ( 𝑄 ‘ 𝑗 )  =  𝐽 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) ,  ( 𝐼 𝑀 ( 𝑄 ‘ 𝑗 ) ) ) ) | 
						
							| 77 | 67 68 69 68 75 76 | syl122anc | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑁 )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  ∧  𝑖  =  𝑁 )  ∧  ¬  𝑗  =  𝑁 )  →  ( 𝐼 ( 𝐼 ( ( ( 1 ... 𝑁 )  minMatR1  𝑅 ) ‘ 𝑀 ) 𝐽 ) ( 𝑄 ‘ 𝑗 ) )  =  if ( 𝐼  =  𝐼 ,  if ( ( 𝑄 ‘ 𝑗 )  =  𝐽 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) ,  ( 𝐼 𝑀 ( 𝑄 ‘ 𝑗 ) ) ) ) | 
						
							| 78 | 55 | a1i | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑁 )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  ∧  𝑖  =  𝑁 )  ∧  ¬  𝑗  =  𝑁 )  →  𝐼  =  𝐼 ) | 
						
							| 79 | 78 | iftrued | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑁 )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  ∧  𝑖  =  𝑁 )  ∧  ¬  𝑗  =  𝑁 )  →  if ( 𝐼  =  𝐼 ,  if ( ( 𝑄 ‘ 𝑗 )  =  𝐽 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) ,  ( 𝐼 𝑀 ( 𝑄 ‘ 𝑗 ) ) )  =  if ( ( 𝑄 ‘ 𝑗 )  =  𝐽 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 80 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑁 )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  ∧  𝑖  =  𝑁 )  ∧  ( 𝑄 ‘ 𝑗 )  =  𝐽 )  →  ( 𝑄 ‘ 𝑗 )  =  𝐽 ) | 
						
							| 81 | 80 | fveq2d | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑁 )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  ∧  𝑖  =  𝑁 )  ∧  ( 𝑄 ‘ 𝑗 )  =  𝐽 )  →  ( ◡ 𝑄 ‘ ( 𝑄 ‘ 𝑗 ) )  =  ( ◡ 𝑄 ‘ 𝐽 ) ) | 
						
							| 82 | 72 13 | symgbasf1o | ⊢ ( 𝑄  ∈  𝐺  →  𝑄 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) | 
						
							| 83 | 70 82 | syl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑁 )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  𝑄 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) | 
						
							| 84 | 83 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑁 )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  ∧  𝑖  =  𝑁 )  ∧  ( 𝑄 ‘ 𝑗 )  =  𝐽 )  →  𝑄 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) | 
						
							| 85 | 71 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑁 )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  ∧  𝑖  =  𝑁 )  ∧  ( 𝑄 ‘ 𝑗 )  =  𝐽 )  →  𝑗  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 86 |  | f1ocnvfv1 | ⊢ ( ( 𝑄 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  ( ◡ 𝑄 ‘ ( 𝑄 ‘ 𝑗 ) )  =  𝑗 ) | 
						
							| 87 | 84 85 86 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑁 )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  ∧  𝑖  =  𝑁 )  ∧  ( 𝑄 ‘ 𝑗 )  =  𝐽 )  →  ( ◡ 𝑄 ‘ ( 𝑄 ‘ 𝑗 ) )  =  𝑗 ) | 
						
							| 88 | 20 | fveq2d | ⊢ ( 𝜑  →  ( ◡ 𝑄 ‘ ( 𝑄 ‘ 𝑁 ) )  =  ( ◡ 𝑄 ‘ 𝐽 ) ) | 
						
							| 89 | 18 82 | syl | ⊢ ( 𝜑  →  𝑄 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) | 
						
							| 90 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 91 | 8 90 | eleqtrdi | ⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 92 |  | eluzfz2 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 1 )  →  𝑁  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 93 | 91 92 | syl | ⊢ ( 𝜑  →  𝑁  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 94 |  | f1ocnvfv1 | ⊢ ( ( 𝑄 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 )  ∧  𝑁  ∈  ( 1 ... 𝑁 ) )  →  ( ◡ 𝑄 ‘ ( 𝑄 ‘ 𝑁 ) )  =  𝑁 ) | 
						
							| 95 | 89 93 94 | syl2anc | ⊢ ( 𝜑  →  ( ◡ 𝑄 ‘ ( 𝑄 ‘ 𝑁 ) )  =  𝑁 ) | 
						
							| 96 | 88 95 | eqtr3d | ⊢ ( 𝜑  →  ( ◡ 𝑄 ‘ 𝐽 )  =  𝑁 ) | 
						
							| 97 | 96 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑁 )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  ( ◡ 𝑄 ‘ 𝐽 )  =  𝑁 ) | 
						
							| 98 | 97 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑁 )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  ∧  𝑖  =  𝑁 )  ∧  ( 𝑄 ‘ 𝑗 )  =  𝐽 )  →  ( ◡ 𝑄 ‘ 𝐽 )  =  𝑁 ) | 
						
							| 99 | 81 87 98 | 3eqtr3d | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑁 )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  ∧  𝑖  =  𝑁 )  ∧  ( 𝑄 ‘ 𝑗 )  =  𝐽 )  →  𝑗  =  𝑁 ) | 
						
							| 100 | 99 | ex | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑁 )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  ∧  𝑖  =  𝑁 )  →  ( ( 𝑄 ‘ 𝑗 )  =  𝐽  →  𝑗  =  𝑁 ) ) | 
						
							| 101 | 100 | con3d | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑁 )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  ∧  𝑖  =  𝑁 )  →  ( ¬  𝑗  =  𝑁  →  ¬  ( 𝑄 ‘ 𝑗 )  =  𝐽 ) ) | 
						
							| 102 | 101 | imp | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑁 )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  ∧  𝑖  =  𝑁 )  ∧  ¬  𝑗  =  𝑁 )  →  ¬  ( 𝑄 ‘ 𝑗 )  =  𝐽 ) | 
						
							| 103 | 102 | iffalsed | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑁 )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  ∧  𝑖  =  𝑁 )  ∧  ¬  𝑗  =  𝑁 )  →  if ( ( 𝑄 ‘ 𝑗 )  =  𝐽 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 104 | 79 103 | eqtrd | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑁 )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  ∧  𝑖  =  𝑁 )  ∧  ¬  𝑗  =  𝑁 )  →  if ( 𝐼  =  𝐼 ,  if ( ( 𝑄 ‘ 𝑗 )  =  𝐽 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) ,  ( 𝐼 𝑀 ( 𝑄 ‘ 𝑗 ) ) )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 105 | 66 77 104 | 3eqtrrd | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑁 )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  ∧  𝑖  =  𝑁 )  ∧  ¬  𝑗  =  𝑁 )  →  ( 0g ‘ 𝑅 )  =  ( ( 𝑃 ‘ 𝑖 ) ( 𝐼 ( ( ( 1 ... 𝑁 )  minMatR1  𝑅 ) ‘ 𝑀 ) 𝐽 ) ( 𝑄 ‘ 𝑗 ) ) ) | 
						
							| 106 | 61 105 | ifeqda | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑁 )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  ∧  𝑖  =  𝑁 )  →  if ( 𝑗  =  𝑁 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) )  =  ( ( 𝑃 ‘ 𝑖 ) ( 𝐼 ( ( ( 1 ... 𝑁 )  minMatR1  𝑅 ) ‘ 𝑀 ) 𝐽 ) ( 𝑄 ‘ 𝑗 ) ) ) | 
						
							| 107 |  | simp2 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑁 )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  𝑖  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 108 | 107 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑁 )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  ∧  ¬  𝑖  =  𝑁 )  →  𝑖  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 109 | 71 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑁 )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  ∧  ¬  𝑖  =  𝑁 )  →  𝑗  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 110 |  | ovexd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑁 )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  ∧  ¬  𝑖  =  𝑁 )  →  ( ( 𝑃 ‘ 𝑖 ) ( 𝐼 ( ( ( 1 ... 𝑁 )  minMatR1  𝑅 ) ‘ 𝑀 ) 𝐽 ) ( 𝑄 ‘ 𝑗 ) )  ∈  V ) | 
						
							| 111 | 15 | oveqi | ⊢ ( ( 𝑃 ‘ 𝑖 ) 𝑈 ( 𝑄 ‘ 𝑗 ) )  =  ( ( 𝑃 ‘ 𝑖 ) ( 𝐼 ( ( ( 1 ... 𝑁 )  minMatR1  𝑅 ) ‘ 𝑀 ) 𝐽 ) ( 𝑄 ‘ 𝑗 ) ) | 
						
							| 112 | 111 | a1i | ⊢ ( ( 𝑖  ∈  ( 1 ... 𝑁 )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  ( ( 𝑃 ‘ 𝑖 ) 𝑈 ( 𝑄 ‘ 𝑗 ) )  =  ( ( 𝑃 ‘ 𝑖 ) ( 𝐼 ( ( ( 1 ... 𝑁 )  minMatR1  𝑅 ) ‘ 𝑀 ) 𝐽 ) ( 𝑄 ‘ 𝑗 ) ) ) | 
						
							| 113 | 112 | mpoeq3ia | ⊢ ( 𝑖  ∈  ( 1 ... 𝑁 ) ,  𝑗  ∈  ( 1 ... 𝑁 )  ↦  ( ( 𝑃 ‘ 𝑖 ) 𝑈 ( 𝑄 ‘ 𝑗 ) ) )  =  ( 𝑖  ∈  ( 1 ... 𝑁 ) ,  𝑗  ∈  ( 1 ... 𝑁 )  ↦  ( ( 𝑃 ‘ 𝑖 ) ( 𝐼 ( ( ( 1 ... 𝑁 )  minMatR1  𝑅 ) ‘ 𝑀 ) 𝐽 ) ( 𝑄 ‘ 𝑗 ) ) ) | 
						
							| 114 | 16 113 | eqtri | ⊢ 𝑊  =  ( 𝑖  ∈  ( 1 ... 𝑁 ) ,  𝑗  ∈  ( 1 ... 𝑁 )  ↦  ( ( 𝑃 ‘ 𝑖 ) ( 𝐼 ( ( ( 1 ... 𝑁 )  minMatR1  𝑅 ) ‘ 𝑀 ) 𝐽 ) ( 𝑄 ‘ 𝑗 ) ) ) | 
						
							| 115 | 114 | ovmpt4g | ⊢ ( ( 𝑖  ∈  ( 1 ... 𝑁 )  ∧  𝑗  ∈  ( 1 ... 𝑁 )  ∧  ( ( 𝑃 ‘ 𝑖 ) ( 𝐼 ( ( ( 1 ... 𝑁 )  minMatR1  𝑅 ) ‘ 𝑀 ) 𝐽 ) ( 𝑄 ‘ 𝑗 ) )  ∈  V )  →  ( 𝑖 𝑊 𝑗 )  =  ( ( 𝑃 ‘ 𝑖 ) ( 𝐼 ( ( ( 1 ... 𝑁 )  minMatR1  𝑅 ) ‘ 𝑀 ) 𝐽 ) ( 𝑄 ‘ 𝑗 ) ) ) | 
						
							| 116 | 108 109 110 115 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑁 )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  ∧  ¬  𝑖  =  𝑁 )  →  ( 𝑖 𝑊 𝑗 )  =  ( ( 𝑃 ‘ 𝑖 ) ( 𝐼 ( ( ( 1 ... 𝑁 )  minMatR1  𝑅 ) ‘ 𝑀 ) 𝐽 ) ( 𝑄 ‘ 𝑗 ) ) ) | 
						
							| 117 | 106 116 | ifeqda | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑁 )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  if ( 𝑖  =  𝑁 ,  if ( 𝑗  =  𝑁 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) ,  ( 𝑖 𝑊 𝑗 ) )  =  ( ( 𝑃 ‘ 𝑖 ) ( 𝐼 ( ( ( 1 ... 𝑁 )  minMatR1  𝑅 ) ‘ 𝑀 ) 𝐽 ) ( 𝑄 ‘ 𝑗 ) ) ) | 
						
							| 118 | 117 | mpoeq3dva | ⊢ ( 𝜑  →  ( 𝑖  ∈  ( 1 ... 𝑁 ) ,  𝑗  ∈  ( 1 ... 𝑁 )  ↦  if ( 𝑖  =  𝑁 ,  if ( 𝑗  =  𝑁 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) ,  ( 𝑖 𝑊 𝑗 ) ) )  =  ( 𝑖  ∈  ( 1 ... 𝑁 ) ,  𝑗  ∈  ( 1 ... 𝑁 )  ↦  ( ( 𝑃 ‘ 𝑖 ) ( 𝐼 ( ( ( 1 ... 𝑁 )  minMatR1  𝑅 ) ‘ 𝑀 ) 𝐽 ) ( 𝑄 ‘ 𝑗 ) ) ) ) | 
						
							| 119 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 120 | 17 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑁 )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  𝑃  ∈  𝐺 ) | 
						
							| 121 | 72 13 | symgfv | ⊢ ( ( 𝑃  ∈  𝐺  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  ( 𝑃 ‘ 𝑖 )  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 122 | 120 107 121 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑁 )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  ( 𝑃 ‘ 𝑖 )  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 123 | 31 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑁 )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  𝑈  ∈  𝐵 ) | 
						
							| 124 | 2 119 1 122 74 123 | matecld | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑁 )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  ( ( 𝑃 ‘ 𝑖 ) 𝑈 ( 𝑄 ‘ 𝑗 ) )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 125 | 2 119 1 26 9 124 | matbas2d | ⊢ ( 𝜑  →  ( 𝑖  ∈  ( 1 ... 𝑁 ) ,  𝑗  ∈  ( 1 ... 𝑁 )  ↦  ( ( 𝑃 ‘ 𝑖 ) 𝑈 ( 𝑄 ‘ 𝑗 ) ) )  ∈  𝐵 ) | 
						
							| 126 | 16 125 | eqeltrid | ⊢ ( 𝜑  →  𝑊  ∈  𝐵 ) | 
						
							| 127 | 119 51 | ringidcl | ⊢ ( 𝑅  ∈  Ring  →  ( 1r ‘ 𝑅 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 128 | 28 127 | syl | ⊢ ( 𝜑  →  ( 1r ‘ 𝑅 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 129 |  | eqid | ⊢ ( ( 1 ... 𝑁 )  matRRep  𝑅 )  =  ( ( 1 ... 𝑁 )  matRRep  𝑅 ) | 
						
							| 130 | 2 1 129 52 | marrepval | ⊢ ( ( ( 𝑊  ∈  𝐵  ∧  ( 1r ‘ 𝑅 )  ∈  ( Base ‘ 𝑅 ) )  ∧  ( 𝑁  ∈  ( 1 ... 𝑁 )  ∧  𝑁  ∈  ( 1 ... 𝑁 ) ) )  →  ( 𝑁 ( 𝑊 ( ( 1 ... 𝑁 )  matRRep  𝑅 ) ( 1r ‘ 𝑅 ) ) 𝑁 )  =  ( 𝑖  ∈  ( 1 ... 𝑁 ) ,  𝑗  ∈  ( 1 ... 𝑁 )  ↦  if ( 𝑖  =  𝑁 ,  if ( 𝑗  =  𝑁 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) ,  ( 𝑖 𝑊 𝑗 ) ) ) ) | 
						
							| 131 | 126 128 93 93 130 | syl22anc | ⊢ ( 𝜑  →  ( 𝑁 ( 𝑊 ( ( 1 ... 𝑁 )  matRRep  𝑅 ) ( 1r ‘ 𝑅 ) ) 𝑁 )  =  ( 𝑖  ∈  ( 1 ... 𝑁 ) ,  𝑗  ∈  ( 1 ... 𝑁 )  ↦  if ( 𝑖  =  𝑁 ,  if ( 𝑗  =  𝑁 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) ,  ( 𝑖 𝑊 𝑗 ) ) ) ) | 
						
							| 132 | 114 | a1i | ⊢ ( 𝜑  →  𝑊  =  ( 𝑖  ∈  ( 1 ... 𝑁 ) ,  𝑗  ∈  ( 1 ... 𝑁 )  ↦  ( ( 𝑃 ‘ 𝑖 ) ( 𝐼 ( ( ( 1 ... 𝑁 )  minMatR1  𝑅 ) ‘ 𝑀 ) 𝐽 ) ( 𝑄 ‘ 𝑗 ) ) ) ) | 
						
							| 133 | 118 131 132 | 3eqtr4d | ⊢ ( 𝜑  →  ( 𝑁 ( 𝑊 ( ( 1 ... 𝑁 )  matRRep  𝑅 ) ( 1r ‘ 𝑅 ) ) 𝑁 )  =  𝑊 ) | 
						
							| 134 | 133 | fveq2d | ⊢ ( 𝜑  →  ( 𝐷 ‘ ( 𝑁 ( 𝑊 ( ( 1 ... 𝑁 )  matRRep  𝑅 ) ( 1r ‘ 𝑅 ) ) 𝑁 ) )  =  ( 𝐷 ‘ 𝑊 ) ) | 
						
							| 135 |  | eqid | ⊢ ( ( 1 ... 𝑁 )  subMat  𝑅 )  =  ( ( 1 ... 𝑁 )  subMat  𝑅 ) | 
						
							| 136 | 2 135 1 | submaval | ⊢ ( ( 𝑊  ∈  𝐵  ∧  𝑁  ∈  ( 1 ... 𝑁 )  ∧  𝑁  ∈  ( 1 ... 𝑁 ) )  →  ( 𝑁 ( ( ( 1 ... 𝑁 )  subMat  𝑅 ) ‘ 𝑊 ) 𝑁 )  =  ( 𝑖  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝑁 } ) ,  𝑗  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝑁 } )  ↦  ( 𝑖 𝑊 𝑗 ) ) ) | 
						
							| 137 | 126 93 93 136 | syl3anc | ⊢ ( 𝜑  →  ( 𝑁 ( ( ( 1 ... 𝑁 )  subMat  𝑅 ) ‘ 𝑊 ) 𝑁 )  =  ( 𝑖  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝑁 } ) ,  𝑗  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝑁 } )  ↦  ( 𝑖 𝑊 𝑗 ) ) ) | 
						
							| 138 |  | fzdif2 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 1 )  →  ( ( 1 ... 𝑁 )  ∖  { 𝑁 } )  =  ( 1 ... ( 𝑁  −  1 ) ) ) | 
						
							| 139 | 91 138 | syl | ⊢ ( 𝜑  →  ( ( 1 ... 𝑁 )  ∖  { 𝑁 } )  =  ( 1 ... ( 𝑁  −  1 ) ) ) | 
						
							| 140 |  | mpoeq12 | ⊢ ( ( ( ( 1 ... 𝑁 )  ∖  { 𝑁 } )  =  ( 1 ... ( 𝑁  −  1 ) )  ∧  ( ( 1 ... 𝑁 )  ∖  { 𝑁 } )  =  ( 1 ... ( 𝑁  −  1 ) ) )  →  ( 𝑖  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝑁 } ) ,  𝑗  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝑁 } )  ↦  ( 𝑖 𝑊 𝑗 ) )  =  ( 𝑖  ∈  ( 1 ... ( 𝑁  −  1 ) ) ,  𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) )  ↦  ( 𝑖 𝑊 𝑗 ) ) ) | 
						
							| 141 | 139 139 140 | syl2anc | ⊢ ( 𝜑  →  ( 𝑖  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝑁 } ) ,  𝑗  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝑁 } )  ↦  ( 𝑖 𝑊 𝑗 ) )  =  ( 𝑖  ∈  ( 1 ... ( 𝑁  −  1 ) ) ,  𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) )  ↦  ( 𝑖 𝑊 𝑗 ) ) ) | 
						
							| 142 | 137 141 | eqtrd | ⊢ ( 𝜑  →  ( 𝑁 ( ( ( 1 ... 𝑁 )  subMat  𝑅 ) ‘ 𝑊 ) 𝑁 )  =  ( 𝑖  ∈  ( 1 ... ( 𝑁  −  1 ) ) ,  𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) )  ↦  ( 𝑖 𝑊 𝑗 ) ) ) | 
						
							| 143 |  | difssd | ⊢ ( 𝜑  →  ( ( 1 ... 𝑁 )  ∖  { 𝑁 } )  ⊆  ( 1 ... 𝑁 ) ) | 
						
							| 144 | 139 143 | eqsstrrd | ⊢ ( 𝜑  →  ( 1 ... ( 𝑁  −  1 ) )  ⊆  ( 1 ... 𝑁 ) ) | 
						
							| 145 | 2 1 | submabas | ⊢ ( ( 𝑊  ∈  𝐵  ∧  ( 1 ... ( 𝑁  −  1 ) )  ⊆  ( 1 ... 𝑁 ) )  →  ( 𝑖  ∈  ( 1 ... ( 𝑁  −  1 ) ) ,  𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) )  ↦  ( 𝑖 𝑊 𝑗 ) )  ∈  ( Base ‘ ( ( 1 ... ( 𝑁  −  1 ) )  Mat  𝑅 ) ) ) | 
						
							| 146 | 126 144 145 | syl2anc | ⊢ ( 𝜑  →  ( 𝑖  ∈  ( 1 ... ( 𝑁  −  1 ) ) ,  𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) )  ↦  ( 𝑖 𝑊 𝑗 ) )  ∈  ( Base ‘ ( ( 1 ... ( 𝑁  −  1 ) )  Mat  𝑅 ) ) ) | 
						
							| 147 | 142 146 | eqeltrd | ⊢ ( 𝜑  →  ( 𝑁 ( ( ( 1 ... 𝑁 )  subMat  𝑅 ) ‘ 𝑊 ) 𝑁 )  ∈  ( Base ‘ ( ( 1 ... ( 𝑁  −  1 ) )  Mat  𝑅 ) ) ) | 
						
							| 148 |  | eqid | ⊢ ( ( 1 ... ( 𝑁  −  1 ) )  Mat  𝑅 )  =  ( ( 1 ... ( 𝑁  −  1 ) )  Mat  𝑅 ) | 
						
							| 149 |  | eqid | ⊢ ( Base ‘ ( ( 1 ... ( 𝑁  −  1 ) )  Mat  𝑅 ) )  =  ( Base ‘ ( ( 1 ... ( 𝑁  −  1 ) )  Mat  𝑅 ) ) | 
						
							| 150 | 7 148 149 119 | mdetcl | ⊢ ( ( 𝑅  ∈  CRing  ∧  ( 𝑁 ( ( ( 1 ... 𝑁 )  subMat  𝑅 ) ‘ 𝑊 ) 𝑁 )  ∈  ( Base ‘ ( ( 1 ... ( 𝑁  −  1 ) )  Mat  𝑅 ) ) )  →  ( 𝐸 ‘ ( 𝑁 ( ( ( 1 ... 𝑁 )  subMat  𝑅 ) ‘ 𝑊 ) 𝑁 ) )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 151 | 9 147 150 | syl2anc | ⊢ ( 𝜑  →  ( 𝐸 ‘ ( 𝑁 ( ( ( 1 ... 𝑁 )  subMat  𝑅 ) ‘ 𝑊 ) 𝑁 ) )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 152 | 119 5 51 | ringlidm | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝐸 ‘ ( 𝑁 ( ( ( 1 ... 𝑁 )  subMat  𝑅 ) ‘ 𝑊 ) 𝑁 ) )  ∈  ( Base ‘ 𝑅 ) )  →  ( ( 1r ‘ 𝑅 )  ·  ( 𝐸 ‘ ( 𝑁 ( ( ( 1 ... 𝑁 )  subMat  𝑅 ) ‘ 𝑊 ) 𝑁 ) ) )  =  ( 𝐸 ‘ ( 𝑁 ( ( ( 1 ... 𝑁 )  subMat  𝑅 ) ‘ 𝑊 ) 𝑁 ) ) ) | 
						
							| 153 | 28 151 152 | syl2anc | ⊢ ( 𝜑  →  ( ( 1r ‘ 𝑅 )  ·  ( 𝐸 ‘ ( 𝑁 ( ( ( 1 ... 𝑁 )  subMat  𝑅 ) ‘ 𝑊 ) 𝑁 ) ) )  =  ( 𝐸 ‘ ( 𝑁 ( ( ( 1 ... 𝑁 )  subMat  𝑅 ) ‘ 𝑊 ) 𝑁 ) ) ) | 
						
							| 154 | 2 | fveq2i | ⊢ ( Base ‘ 𝐴 )  =  ( Base ‘ ( ( 1 ... 𝑁 )  Mat  𝑅 ) ) | 
						
							| 155 | 1 154 | eqtri | ⊢ 𝐵  =  ( Base ‘ ( ( 1 ... 𝑁 )  Mat  𝑅 ) ) | 
						
							| 156 | 126 155 | eleqtrdi | ⊢ ( 𝜑  →  𝑊  ∈  ( Base ‘ ( ( 1 ... 𝑁 )  Mat  𝑅 ) ) ) | 
						
							| 157 |  | smadiadetr | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑊  ∈  ( Base ‘ ( ( 1 ... 𝑁 )  Mat  𝑅 ) ) )  ∧  ( 𝑁  ∈  ( 1 ... 𝑁 )  ∧  ( 1r ‘ 𝑅 )  ∈  ( Base ‘ 𝑅 ) ) )  →  ( ( ( 1 ... 𝑁 )  maDet  𝑅 ) ‘ ( 𝑁 ( 𝑊 ( ( 1 ... 𝑁 )  matRRep  𝑅 ) ( 1r ‘ 𝑅 ) ) 𝑁 ) )  =  ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) ( ( ( ( 1 ... 𝑁 )  ∖  { 𝑁 } )  maDet  𝑅 ) ‘ ( 𝑁 ( ( ( 1 ... 𝑁 )  subMat  𝑅 ) ‘ 𝑊 ) 𝑁 ) ) ) ) | 
						
							| 158 | 9 156 93 128 157 | syl22anc | ⊢ ( 𝜑  →  ( ( ( 1 ... 𝑁 )  maDet  𝑅 ) ‘ ( 𝑁 ( 𝑊 ( ( 1 ... 𝑁 )  matRRep  𝑅 ) ( 1r ‘ 𝑅 ) ) 𝑁 ) )  =  ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) ( ( ( ( 1 ... 𝑁 )  ∖  { 𝑁 } )  maDet  𝑅 ) ‘ ( 𝑁 ( ( ( 1 ... 𝑁 )  subMat  𝑅 ) ‘ 𝑊 ) 𝑁 ) ) ) ) | 
						
							| 159 | 3 | fveq1i | ⊢ ( 𝐷 ‘ ( 𝑁 ( 𝑊 ( ( 1 ... 𝑁 )  matRRep  𝑅 ) ( 1r ‘ 𝑅 ) ) 𝑁 ) )  =  ( ( ( 1 ... 𝑁 )  maDet  𝑅 ) ‘ ( 𝑁 ( 𝑊 ( ( 1 ... 𝑁 )  matRRep  𝑅 ) ( 1r ‘ 𝑅 ) ) 𝑁 ) ) | 
						
							| 160 | 5 | oveqi | ⊢ ( ( 1r ‘ 𝑅 )  ·  ( ( ( ( 1 ... 𝑁 )  ∖  { 𝑁 } )  maDet  𝑅 ) ‘ ( 𝑁 ( ( ( 1 ... 𝑁 )  subMat  𝑅 ) ‘ 𝑊 ) 𝑁 ) ) )  =  ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) ( ( ( ( 1 ... 𝑁 )  ∖  { 𝑁 } )  maDet  𝑅 ) ‘ ( 𝑁 ( ( ( 1 ... 𝑁 )  subMat  𝑅 ) ‘ 𝑊 ) 𝑁 ) ) ) | 
						
							| 161 | 159 160 | eqeq12i | ⊢ ( ( 𝐷 ‘ ( 𝑁 ( 𝑊 ( ( 1 ... 𝑁 )  matRRep  𝑅 ) ( 1r ‘ 𝑅 ) ) 𝑁 ) )  =  ( ( 1r ‘ 𝑅 )  ·  ( ( ( ( 1 ... 𝑁 )  ∖  { 𝑁 } )  maDet  𝑅 ) ‘ ( 𝑁 ( ( ( 1 ... 𝑁 )  subMat  𝑅 ) ‘ 𝑊 ) 𝑁 ) ) )  ↔  ( ( ( 1 ... 𝑁 )  maDet  𝑅 ) ‘ ( 𝑁 ( 𝑊 ( ( 1 ... 𝑁 )  matRRep  𝑅 ) ( 1r ‘ 𝑅 ) ) 𝑁 ) )  =  ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) ( ( ( ( 1 ... 𝑁 )  ∖  { 𝑁 } )  maDet  𝑅 ) ‘ ( 𝑁 ( ( ( 1 ... 𝑁 )  subMat  𝑅 ) ‘ 𝑊 ) 𝑁 ) ) ) ) | 
						
							| 162 | 158 161 | sylibr | ⊢ ( 𝜑  →  ( 𝐷 ‘ ( 𝑁 ( 𝑊 ( ( 1 ... 𝑁 )  matRRep  𝑅 ) ( 1r ‘ 𝑅 ) ) 𝑁 ) )  =  ( ( 1r ‘ 𝑅 )  ·  ( ( ( ( 1 ... 𝑁 )  ∖  { 𝑁 } )  maDet  𝑅 ) ‘ ( 𝑁 ( ( ( 1 ... 𝑁 )  subMat  𝑅 ) ‘ 𝑊 ) 𝑁 ) ) ) ) | 
						
							| 163 | 139 | oveq1d | ⊢ ( 𝜑  →  ( ( ( 1 ... 𝑁 )  ∖  { 𝑁 } )  maDet  𝑅 )  =  ( ( 1 ... ( 𝑁  −  1 ) )  maDet  𝑅 ) ) | 
						
							| 164 | 163 7 | eqtr4di | ⊢ ( 𝜑  →  ( ( ( 1 ... 𝑁 )  ∖  { 𝑁 } )  maDet  𝑅 )  =  𝐸 ) | 
						
							| 165 | 164 | fveq1d | ⊢ ( 𝜑  →  ( ( ( ( 1 ... 𝑁 )  ∖  { 𝑁 } )  maDet  𝑅 ) ‘ ( 𝑁 ( ( ( 1 ... 𝑁 )  subMat  𝑅 ) ‘ 𝑊 ) 𝑁 ) )  =  ( 𝐸 ‘ ( 𝑁 ( ( ( 1 ... 𝑁 )  subMat  𝑅 ) ‘ 𝑊 ) 𝑁 ) ) ) | 
						
							| 166 | 165 | oveq2d | ⊢ ( 𝜑  →  ( ( 1r ‘ 𝑅 )  ·  ( ( ( ( 1 ... 𝑁 )  ∖  { 𝑁 } )  maDet  𝑅 ) ‘ ( 𝑁 ( ( ( 1 ... 𝑁 )  subMat  𝑅 ) ‘ 𝑊 ) 𝑁 ) ) )  =  ( ( 1r ‘ 𝑅 )  ·  ( 𝐸 ‘ ( 𝑁 ( ( ( 1 ... 𝑁 )  subMat  𝑅 ) ‘ 𝑊 ) 𝑁 ) ) ) ) | 
						
							| 167 | 162 166 | eqtrd | ⊢ ( 𝜑  →  ( 𝐷 ‘ ( 𝑁 ( 𝑊 ( ( 1 ... 𝑁 )  matRRep  𝑅 ) ( 1r ‘ 𝑅 ) ) 𝑁 ) )  =  ( ( 1r ‘ 𝑅 )  ·  ( 𝐸 ‘ ( 𝑁 ( ( ( 1 ... 𝑁 )  subMat  𝑅 ) ‘ 𝑊 ) 𝑁 ) ) ) ) | 
						
							| 168 | 2 1 | submat1n | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑊  ∈  𝐵 )  →  ( 𝑁 ( subMat1 ‘ 𝑊 ) 𝑁 )  =  ( 𝑁 ( ( ( 1 ... 𝑁 )  subMat  𝑅 ) ‘ 𝑊 ) 𝑁 ) ) | 
						
							| 169 | 8 126 168 | syl2anc | ⊢ ( 𝜑  →  ( 𝑁 ( subMat1 ‘ 𝑊 ) 𝑁 )  =  ( 𝑁 ( ( ( 1 ... 𝑁 )  subMat  𝑅 ) ‘ 𝑊 ) 𝑁 ) ) | 
						
							| 170 | 169 | fveq2d | ⊢ ( 𝜑  →  ( 𝐸 ‘ ( 𝑁 ( subMat1 ‘ 𝑊 ) 𝑁 ) )  =  ( 𝐸 ‘ ( 𝑁 ( ( ( 1 ... 𝑁 )  subMat  𝑅 ) ‘ 𝑊 ) 𝑁 ) ) ) | 
						
							| 171 | 153 167 170 | 3eqtr4d | ⊢ ( 𝜑  →  ( 𝐷 ‘ ( 𝑁 ( 𝑊 ( ( 1 ... 𝑁 )  matRRep  𝑅 ) ( 1r ‘ 𝑅 ) ) 𝑁 ) )  =  ( 𝐸 ‘ ( 𝑁 ( subMat1 ‘ 𝑊 ) 𝑁 ) ) ) | 
						
							| 172 | 134 171 | eqtr3d | ⊢ ( 𝜑  →  ( 𝐷 ‘ 𝑊 )  =  ( 𝐸 ‘ ( 𝑁 ( subMat1 ‘ 𝑊 ) 𝑁 ) ) ) | 
						
							| 173 | 2 1 8 10 11 28 12 15 | submatminr1 | ⊢ ( 𝜑  →  ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝐽 )  =  ( 𝐼 ( subMat1 ‘ 𝑈 ) 𝐽 ) ) | 
						
							| 174 | 173 21 | eqtrd | ⊢ ( 𝜑  →  ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝐽 )  =  ( 𝑁 ( subMat1 ‘ 𝑊 ) 𝑁 ) ) | 
						
							| 175 | 174 | fveq2d | ⊢ ( 𝜑  →  ( 𝐸 ‘ ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝐽 ) )  =  ( 𝐸 ‘ ( 𝑁 ( subMat1 ‘ 𝑊 ) 𝑁 ) ) ) | 
						
							| 176 | 172 175 | eqtr4d | ⊢ ( 𝜑  →  ( 𝐷 ‘ 𝑊 )  =  ( 𝐸 ‘ ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝐽 ) ) ) | 
						
							| 177 | 176 | oveq2d | ⊢ ( 𝜑  →  ( ( 𝑍 ‘ ( ( 𝑆 ‘ 𝑃 )  ·  ( 𝑆 ‘ 𝑄 ) ) )  ·  ( 𝐷 ‘ 𝑊 ) )  =  ( ( 𝑍 ‘ ( ( 𝑆 ‘ 𝑃 )  ·  ( 𝑆 ‘ 𝑄 ) ) )  ·  ( 𝐸 ‘ ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝐽 ) ) ) ) | 
						
							| 178 | 25 32 177 | 3eqtrd | ⊢ ( 𝜑  →  ( 𝐽 ( 𝐾 ‘ 𝑀 ) 𝐼 )  =  ( ( 𝑍 ‘ ( ( 𝑆 ‘ 𝑃 )  ·  ( 𝑆 ‘ 𝑄 ) ) )  ·  ( 𝐸 ‘ ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝐽 ) ) ) ) |