Step |
Hyp |
Ref |
Expression |
1 |
|
madjusmdet.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
2 |
|
madjusmdet.a |
⊢ 𝐴 = ( ( 1 ... 𝑁 ) Mat 𝑅 ) |
3 |
|
madjusmdet.d |
⊢ 𝐷 = ( ( 1 ... 𝑁 ) maDet 𝑅 ) |
4 |
|
madjusmdet.k |
⊢ 𝐾 = ( ( 1 ... 𝑁 ) maAdju 𝑅 ) |
5 |
|
madjusmdet.t |
⊢ · = ( .r ‘ 𝑅 ) |
6 |
|
madjusmdet.z |
⊢ 𝑍 = ( ℤRHom ‘ 𝑅 ) |
7 |
|
madjusmdet.e |
⊢ 𝐸 = ( ( 1 ... ( 𝑁 − 1 ) ) maDet 𝑅 ) |
8 |
|
madjusmdet.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
9 |
|
madjusmdet.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
10 |
|
madjusmdet.i |
⊢ ( 𝜑 → 𝐼 ∈ ( 1 ... 𝑁 ) ) |
11 |
|
madjusmdet.j |
⊢ ( 𝜑 → 𝐽 ∈ ( 1 ... 𝑁 ) ) |
12 |
|
madjusmdet.m |
⊢ ( 𝜑 → 𝑀 ∈ 𝐵 ) |
13 |
|
madjusmdetlem1.g |
⊢ 𝐺 = ( Base ‘ ( SymGrp ‘ ( 1 ... 𝑁 ) ) ) |
14 |
|
madjusmdetlem1.s |
⊢ 𝑆 = ( pmSgn ‘ ( 1 ... 𝑁 ) ) |
15 |
|
madjusmdetlem1.u |
⊢ 𝑈 = ( 𝐼 ( ( ( 1 ... 𝑁 ) minMatR1 𝑅 ) ‘ 𝑀 ) 𝐽 ) |
16 |
|
madjusmdetlem1.w |
⊢ 𝑊 = ( 𝑖 ∈ ( 1 ... 𝑁 ) , 𝑗 ∈ ( 1 ... 𝑁 ) ↦ ( ( 𝑃 ‘ 𝑖 ) 𝑈 ( 𝑄 ‘ 𝑗 ) ) ) |
17 |
|
madjusmdetlem1.p |
⊢ ( 𝜑 → 𝑃 ∈ 𝐺 ) |
18 |
|
madjusmdetlem1.q |
⊢ ( 𝜑 → 𝑄 ∈ 𝐺 ) |
19 |
|
madjusmdetlem1.1 |
⊢ ( 𝜑 → ( 𝑃 ‘ 𝑁 ) = 𝐼 ) |
20 |
|
madjusmdetlem1.2 |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝑁 ) = 𝐽 ) |
21 |
|
madjusmdetlem1.3 |
⊢ ( 𝜑 → ( 𝐼 ( subMat1 ‘ 𝑈 ) 𝐽 ) = ( 𝑁 ( subMat1 ‘ 𝑊 ) 𝑁 ) ) |
22 |
2 1 3 4
|
maducoevalmin1 |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝐽 ∈ ( 1 ... 𝑁 ) ∧ 𝐼 ∈ ( 1 ... 𝑁 ) ) → ( 𝐽 ( 𝐾 ‘ 𝑀 ) 𝐼 ) = ( 𝐷 ‘ ( 𝐼 ( ( ( 1 ... 𝑁 ) minMatR1 𝑅 ) ‘ 𝑀 ) 𝐽 ) ) ) |
23 |
12 11 10 22
|
syl3anc |
⊢ ( 𝜑 → ( 𝐽 ( 𝐾 ‘ 𝑀 ) 𝐼 ) = ( 𝐷 ‘ ( 𝐼 ( ( ( 1 ... 𝑁 ) minMatR1 𝑅 ) ‘ 𝑀 ) 𝐽 ) ) ) |
24 |
15
|
fveq2i |
⊢ ( 𝐷 ‘ 𝑈 ) = ( 𝐷 ‘ ( 𝐼 ( ( ( 1 ... 𝑁 ) minMatR1 𝑅 ) ‘ 𝑀 ) 𝐽 ) ) |
25 |
23 24
|
eqtr4di |
⊢ ( 𝜑 → ( 𝐽 ( 𝐾 ‘ 𝑀 ) 𝐼 ) = ( 𝐷 ‘ 𝑈 ) ) |
26 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... 𝑁 ) ∈ Fin ) |
27 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
28 |
9 27
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
29 |
2 1
|
minmar1cl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐼 ∈ ( 1 ... 𝑁 ) ∧ 𝐽 ∈ ( 1 ... 𝑁 ) ) ) → ( 𝐼 ( ( ( 1 ... 𝑁 ) minMatR1 𝑅 ) ‘ 𝑀 ) 𝐽 ) ∈ 𝐵 ) |
30 |
28 12 10 11 29
|
syl22anc |
⊢ ( 𝜑 → ( 𝐼 ( ( ( 1 ... 𝑁 ) minMatR1 𝑅 ) ‘ 𝑀 ) 𝐽 ) ∈ 𝐵 ) |
31 |
15 30
|
eqeltrid |
⊢ ( 𝜑 → 𝑈 ∈ 𝐵 ) |
32 |
2 1 3 13 14 6 5 16 9 26 31 17 18
|
mdetpmtr12 |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝑈 ) = ( ( 𝑍 ‘ ( ( 𝑆 ‘ 𝑃 ) · ( 𝑆 ‘ 𝑄 ) ) ) · ( 𝐷 ‘ 𝑊 ) ) ) |
33 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑖 = 𝑁 ) ∧ 𝑗 = 𝑁 ) → 𝑖 = 𝑁 ) |
34 |
33
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑖 = 𝑁 ) ∧ 𝑗 = 𝑁 ) → ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ 𝑁 ) ) |
35 |
19
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( 𝑃 ‘ 𝑁 ) = 𝐼 ) |
36 |
35
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑖 = 𝑁 ) ∧ 𝑗 = 𝑁 ) → ( 𝑃 ‘ 𝑁 ) = 𝐼 ) |
37 |
34 36
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑖 = 𝑁 ) ∧ 𝑗 = 𝑁 ) → ( 𝑃 ‘ 𝑖 ) = 𝐼 ) |
38 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑖 = 𝑁 ) ∧ 𝑗 = 𝑁 ) → 𝑗 = 𝑁 ) |
39 |
38
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑖 = 𝑁 ) ∧ 𝑗 = 𝑁 ) → ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ 𝑁 ) ) |
40 |
20
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( 𝑄 ‘ 𝑁 ) = 𝐽 ) |
41 |
40
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑖 = 𝑁 ) ∧ 𝑗 = 𝑁 ) → ( 𝑄 ‘ 𝑁 ) = 𝐽 ) |
42 |
39 41
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑖 = 𝑁 ) ∧ 𝑗 = 𝑁 ) → ( 𝑄 ‘ 𝑗 ) = 𝐽 ) |
43 |
37 42
|
oveq12d |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑖 = 𝑁 ) ∧ 𝑗 = 𝑁 ) → ( ( 𝑃 ‘ 𝑖 ) ( 𝐼 ( ( ( 1 ... 𝑁 ) minMatR1 𝑅 ) ‘ 𝑀 ) 𝐽 ) ( 𝑄 ‘ 𝑗 ) ) = ( 𝐼 ( 𝐼 ( ( ( 1 ... 𝑁 ) minMatR1 𝑅 ) ‘ 𝑀 ) 𝐽 ) 𝐽 ) ) |
44 |
12
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → 𝑀 ∈ 𝐵 ) |
45 |
44
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑖 = 𝑁 ) ∧ 𝑗 = 𝑁 ) → 𝑀 ∈ 𝐵 ) |
46 |
10
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → 𝐼 ∈ ( 1 ... 𝑁 ) ) |
47 |
46
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑖 = 𝑁 ) ∧ 𝑗 = 𝑁 ) → 𝐼 ∈ ( 1 ... 𝑁 ) ) |
48 |
11
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → 𝐽 ∈ ( 1 ... 𝑁 ) ) |
49 |
48
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑖 = 𝑁 ) ∧ 𝑗 = 𝑁 ) → 𝐽 ∈ ( 1 ... 𝑁 ) ) |
50 |
|
eqid |
⊢ ( ( 1 ... 𝑁 ) minMatR1 𝑅 ) = ( ( 1 ... 𝑁 ) minMatR1 𝑅 ) |
51 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
52 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
53 |
2 1 50 51 52
|
minmar1eval |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ ( 𝐼 ∈ ( 1 ... 𝑁 ) ∧ 𝐽 ∈ ( 1 ... 𝑁 ) ) ∧ ( 𝐼 ∈ ( 1 ... 𝑁 ) ∧ 𝐽 ∈ ( 1 ... 𝑁 ) ) ) → ( 𝐼 ( 𝐼 ( ( ( 1 ... 𝑁 ) minMatR1 𝑅 ) ‘ 𝑀 ) 𝐽 ) 𝐽 ) = if ( 𝐼 = 𝐼 , if ( 𝐽 = 𝐽 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) , ( 𝐼 𝑀 𝐽 ) ) ) |
54 |
45 47 49 47 49 53
|
syl122anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑖 = 𝑁 ) ∧ 𝑗 = 𝑁 ) → ( 𝐼 ( 𝐼 ( ( ( 1 ... 𝑁 ) minMatR1 𝑅 ) ‘ 𝑀 ) 𝐽 ) 𝐽 ) = if ( 𝐼 = 𝐼 , if ( 𝐽 = 𝐽 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) , ( 𝐼 𝑀 𝐽 ) ) ) |
55 |
|
eqid |
⊢ 𝐼 = 𝐼 |
56 |
55
|
iftruei |
⊢ if ( 𝐼 = 𝐼 , if ( 𝐽 = 𝐽 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) , ( 𝐼 𝑀 𝐽 ) ) = if ( 𝐽 = 𝐽 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) |
57 |
|
eqid |
⊢ 𝐽 = 𝐽 |
58 |
57
|
iftruei |
⊢ if ( 𝐽 = 𝐽 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) = ( 1r ‘ 𝑅 ) |
59 |
56 58
|
eqtri |
⊢ if ( 𝐼 = 𝐼 , if ( 𝐽 = 𝐽 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) , ( 𝐼 𝑀 𝐽 ) ) = ( 1r ‘ 𝑅 ) |
60 |
59
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑖 = 𝑁 ) ∧ 𝑗 = 𝑁 ) → if ( 𝐼 = 𝐼 , if ( 𝐽 = 𝐽 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) , ( 𝐼 𝑀 𝐽 ) ) = ( 1r ‘ 𝑅 ) ) |
61 |
43 54 60
|
3eqtrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑖 = 𝑁 ) ∧ 𝑗 = 𝑁 ) → ( 1r ‘ 𝑅 ) = ( ( 𝑃 ‘ 𝑖 ) ( 𝐼 ( ( ( 1 ... 𝑁 ) minMatR1 𝑅 ) ‘ 𝑀 ) 𝐽 ) ( 𝑄 ‘ 𝑗 ) ) ) |
62 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑖 = 𝑁 ) ∧ ¬ 𝑗 = 𝑁 ) → 𝑖 = 𝑁 ) |
63 |
62
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑖 = 𝑁 ) ∧ ¬ 𝑗 = 𝑁 ) → ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ 𝑁 ) ) |
64 |
35
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑖 = 𝑁 ) ∧ ¬ 𝑗 = 𝑁 ) → ( 𝑃 ‘ 𝑁 ) = 𝐼 ) |
65 |
63 64
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑖 = 𝑁 ) ∧ ¬ 𝑗 = 𝑁 ) → ( 𝑃 ‘ 𝑖 ) = 𝐼 ) |
66 |
65
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑖 = 𝑁 ) ∧ ¬ 𝑗 = 𝑁 ) → ( ( 𝑃 ‘ 𝑖 ) ( 𝐼 ( ( ( 1 ... 𝑁 ) minMatR1 𝑅 ) ‘ 𝑀 ) 𝐽 ) ( 𝑄 ‘ 𝑗 ) ) = ( 𝐼 ( 𝐼 ( ( ( 1 ... 𝑁 ) minMatR1 𝑅 ) ‘ 𝑀 ) 𝐽 ) ( 𝑄 ‘ 𝑗 ) ) ) |
67 |
44
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑖 = 𝑁 ) ∧ ¬ 𝑗 = 𝑁 ) → 𝑀 ∈ 𝐵 ) |
68 |
46
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑖 = 𝑁 ) ∧ ¬ 𝑗 = 𝑁 ) → 𝐼 ∈ ( 1 ... 𝑁 ) ) |
69 |
48
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑖 = 𝑁 ) ∧ ¬ 𝑗 = 𝑁 ) → 𝐽 ∈ ( 1 ... 𝑁 ) ) |
70 |
18
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → 𝑄 ∈ 𝐺 ) |
71 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → 𝑗 ∈ ( 1 ... 𝑁 ) ) |
72 |
|
eqid |
⊢ ( SymGrp ‘ ( 1 ... 𝑁 ) ) = ( SymGrp ‘ ( 1 ... 𝑁 ) ) |
73 |
72 13
|
symgfv |
⊢ ( ( 𝑄 ∈ 𝐺 ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( 𝑄 ‘ 𝑗 ) ∈ ( 1 ... 𝑁 ) ) |
74 |
70 71 73
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( 𝑄 ‘ 𝑗 ) ∈ ( 1 ... 𝑁 ) ) |
75 |
74
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑖 = 𝑁 ) ∧ ¬ 𝑗 = 𝑁 ) → ( 𝑄 ‘ 𝑗 ) ∈ ( 1 ... 𝑁 ) ) |
76 |
2 1 50 51 52
|
minmar1eval |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ ( 𝐼 ∈ ( 1 ... 𝑁 ) ∧ 𝐽 ∈ ( 1 ... 𝑁 ) ) ∧ ( 𝐼 ∈ ( 1 ... 𝑁 ) ∧ ( 𝑄 ‘ 𝑗 ) ∈ ( 1 ... 𝑁 ) ) ) → ( 𝐼 ( 𝐼 ( ( ( 1 ... 𝑁 ) minMatR1 𝑅 ) ‘ 𝑀 ) 𝐽 ) ( 𝑄 ‘ 𝑗 ) ) = if ( 𝐼 = 𝐼 , if ( ( 𝑄 ‘ 𝑗 ) = 𝐽 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) , ( 𝐼 𝑀 ( 𝑄 ‘ 𝑗 ) ) ) ) |
77 |
67 68 69 68 75 76
|
syl122anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑖 = 𝑁 ) ∧ ¬ 𝑗 = 𝑁 ) → ( 𝐼 ( 𝐼 ( ( ( 1 ... 𝑁 ) minMatR1 𝑅 ) ‘ 𝑀 ) 𝐽 ) ( 𝑄 ‘ 𝑗 ) ) = if ( 𝐼 = 𝐼 , if ( ( 𝑄 ‘ 𝑗 ) = 𝐽 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) , ( 𝐼 𝑀 ( 𝑄 ‘ 𝑗 ) ) ) ) |
78 |
55
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑖 = 𝑁 ) ∧ ¬ 𝑗 = 𝑁 ) → 𝐼 = 𝐼 ) |
79 |
78
|
iftrued |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑖 = 𝑁 ) ∧ ¬ 𝑗 = 𝑁 ) → if ( 𝐼 = 𝐼 , if ( ( 𝑄 ‘ 𝑗 ) = 𝐽 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) , ( 𝐼 𝑀 ( 𝑄 ‘ 𝑗 ) ) ) = if ( ( 𝑄 ‘ 𝑗 ) = 𝐽 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) |
80 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑖 = 𝑁 ) ∧ ( 𝑄 ‘ 𝑗 ) = 𝐽 ) → ( 𝑄 ‘ 𝑗 ) = 𝐽 ) |
81 |
80
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑖 = 𝑁 ) ∧ ( 𝑄 ‘ 𝑗 ) = 𝐽 ) → ( ◡ 𝑄 ‘ ( 𝑄 ‘ 𝑗 ) ) = ( ◡ 𝑄 ‘ 𝐽 ) ) |
82 |
72 13
|
symgbasf1o |
⊢ ( 𝑄 ∈ 𝐺 → 𝑄 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) |
83 |
70 82
|
syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → 𝑄 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) |
84 |
83
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑖 = 𝑁 ) ∧ ( 𝑄 ‘ 𝑗 ) = 𝐽 ) → 𝑄 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) |
85 |
71
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑖 = 𝑁 ) ∧ ( 𝑄 ‘ 𝑗 ) = 𝐽 ) → 𝑗 ∈ ( 1 ... 𝑁 ) ) |
86 |
|
f1ocnvfv1 |
⊢ ( ( 𝑄 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( ◡ 𝑄 ‘ ( 𝑄 ‘ 𝑗 ) ) = 𝑗 ) |
87 |
84 85 86
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑖 = 𝑁 ) ∧ ( 𝑄 ‘ 𝑗 ) = 𝐽 ) → ( ◡ 𝑄 ‘ ( 𝑄 ‘ 𝑗 ) ) = 𝑗 ) |
88 |
20
|
fveq2d |
⊢ ( 𝜑 → ( ◡ 𝑄 ‘ ( 𝑄 ‘ 𝑁 ) ) = ( ◡ 𝑄 ‘ 𝐽 ) ) |
89 |
18 82
|
syl |
⊢ ( 𝜑 → 𝑄 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) |
90 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
91 |
8 90
|
eleqtrdi |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 1 ) ) |
92 |
|
eluzfz2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 1 ) → 𝑁 ∈ ( 1 ... 𝑁 ) ) |
93 |
91 92
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ( 1 ... 𝑁 ) ) |
94 |
|
f1ocnvfv1 |
⊢ ( ( 𝑄 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ∧ 𝑁 ∈ ( 1 ... 𝑁 ) ) → ( ◡ 𝑄 ‘ ( 𝑄 ‘ 𝑁 ) ) = 𝑁 ) |
95 |
89 93 94
|
syl2anc |
⊢ ( 𝜑 → ( ◡ 𝑄 ‘ ( 𝑄 ‘ 𝑁 ) ) = 𝑁 ) |
96 |
88 95
|
eqtr3d |
⊢ ( 𝜑 → ( ◡ 𝑄 ‘ 𝐽 ) = 𝑁 ) |
97 |
96
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( ◡ 𝑄 ‘ 𝐽 ) = 𝑁 ) |
98 |
97
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑖 = 𝑁 ) ∧ ( 𝑄 ‘ 𝑗 ) = 𝐽 ) → ( ◡ 𝑄 ‘ 𝐽 ) = 𝑁 ) |
99 |
81 87 98
|
3eqtr3d |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑖 = 𝑁 ) ∧ ( 𝑄 ‘ 𝑗 ) = 𝐽 ) → 𝑗 = 𝑁 ) |
100 |
99
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑖 = 𝑁 ) → ( ( 𝑄 ‘ 𝑗 ) = 𝐽 → 𝑗 = 𝑁 ) ) |
101 |
100
|
con3d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑖 = 𝑁 ) → ( ¬ 𝑗 = 𝑁 → ¬ ( 𝑄 ‘ 𝑗 ) = 𝐽 ) ) |
102 |
101
|
imp |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑖 = 𝑁 ) ∧ ¬ 𝑗 = 𝑁 ) → ¬ ( 𝑄 ‘ 𝑗 ) = 𝐽 ) |
103 |
102
|
iffalsed |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑖 = 𝑁 ) ∧ ¬ 𝑗 = 𝑁 ) → if ( ( 𝑄 ‘ 𝑗 ) = 𝐽 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
104 |
79 103
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑖 = 𝑁 ) ∧ ¬ 𝑗 = 𝑁 ) → if ( 𝐼 = 𝐼 , if ( ( 𝑄 ‘ 𝑗 ) = 𝐽 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) , ( 𝐼 𝑀 ( 𝑄 ‘ 𝑗 ) ) ) = ( 0g ‘ 𝑅 ) ) |
105 |
66 77 104
|
3eqtrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑖 = 𝑁 ) ∧ ¬ 𝑗 = 𝑁 ) → ( 0g ‘ 𝑅 ) = ( ( 𝑃 ‘ 𝑖 ) ( 𝐼 ( ( ( 1 ... 𝑁 ) minMatR1 𝑅 ) ‘ 𝑀 ) 𝐽 ) ( 𝑄 ‘ 𝑗 ) ) ) |
106 |
61 105
|
ifeqda |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑖 = 𝑁 ) → if ( 𝑗 = 𝑁 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) = ( ( 𝑃 ‘ 𝑖 ) ( 𝐼 ( ( ( 1 ... 𝑁 ) minMatR1 𝑅 ) ‘ 𝑀 ) 𝐽 ) ( 𝑄 ‘ 𝑗 ) ) ) |
107 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → 𝑖 ∈ ( 1 ... 𝑁 ) ) |
108 |
107
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) ∧ ¬ 𝑖 = 𝑁 ) → 𝑖 ∈ ( 1 ... 𝑁 ) ) |
109 |
71
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) ∧ ¬ 𝑖 = 𝑁 ) → 𝑗 ∈ ( 1 ... 𝑁 ) ) |
110 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) ∧ ¬ 𝑖 = 𝑁 ) → ( ( 𝑃 ‘ 𝑖 ) ( 𝐼 ( ( ( 1 ... 𝑁 ) minMatR1 𝑅 ) ‘ 𝑀 ) 𝐽 ) ( 𝑄 ‘ 𝑗 ) ) ∈ V ) |
111 |
15
|
oveqi |
⊢ ( ( 𝑃 ‘ 𝑖 ) 𝑈 ( 𝑄 ‘ 𝑗 ) ) = ( ( 𝑃 ‘ 𝑖 ) ( 𝐼 ( ( ( 1 ... 𝑁 ) minMatR1 𝑅 ) ‘ 𝑀 ) 𝐽 ) ( 𝑄 ‘ 𝑗 ) ) |
112 |
111
|
a1i |
⊢ ( ( 𝑖 ∈ ( 1 ... 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑃 ‘ 𝑖 ) 𝑈 ( 𝑄 ‘ 𝑗 ) ) = ( ( 𝑃 ‘ 𝑖 ) ( 𝐼 ( ( ( 1 ... 𝑁 ) minMatR1 𝑅 ) ‘ 𝑀 ) 𝐽 ) ( 𝑄 ‘ 𝑗 ) ) ) |
113 |
112
|
mpoeq3ia |
⊢ ( 𝑖 ∈ ( 1 ... 𝑁 ) , 𝑗 ∈ ( 1 ... 𝑁 ) ↦ ( ( 𝑃 ‘ 𝑖 ) 𝑈 ( 𝑄 ‘ 𝑗 ) ) ) = ( 𝑖 ∈ ( 1 ... 𝑁 ) , 𝑗 ∈ ( 1 ... 𝑁 ) ↦ ( ( 𝑃 ‘ 𝑖 ) ( 𝐼 ( ( ( 1 ... 𝑁 ) minMatR1 𝑅 ) ‘ 𝑀 ) 𝐽 ) ( 𝑄 ‘ 𝑗 ) ) ) |
114 |
16 113
|
eqtri |
⊢ 𝑊 = ( 𝑖 ∈ ( 1 ... 𝑁 ) , 𝑗 ∈ ( 1 ... 𝑁 ) ↦ ( ( 𝑃 ‘ 𝑖 ) ( 𝐼 ( ( ( 1 ... 𝑁 ) minMatR1 𝑅 ) ‘ 𝑀 ) 𝐽 ) ( 𝑄 ‘ 𝑗 ) ) ) |
115 |
114
|
ovmpt4g |
⊢ ( ( 𝑖 ∈ ( 1 ... 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ∧ ( ( 𝑃 ‘ 𝑖 ) ( 𝐼 ( ( ( 1 ... 𝑁 ) minMatR1 𝑅 ) ‘ 𝑀 ) 𝐽 ) ( 𝑄 ‘ 𝑗 ) ) ∈ V ) → ( 𝑖 𝑊 𝑗 ) = ( ( 𝑃 ‘ 𝑖 ) ( 𝐼 ( ( ( 1 ... 𝑁 ) minMatR1 𝑅 ) ‘ 𝑀 ) 𝐽 ) ( 𝑄 ‘ 𝑗 ) ) ) |
116 |
108 109 110 115
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) ∧ ¬ 𝑖 = 𝑁 ) → ( 𝑖 𝑊 𝑗 ) = ( ( 𝑃 ‘ 𝑖 ) ( 𝐼 ( ( ( 1 ... 𝑁 ) minMatR1 𝑅 ) ‘ 𝑀 ) 𝐽 ) ( 𝑄 ‘ 𝑗 ) ) ) |
117 |
106 116
|
ifeqda |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → if ( 𝑖 = 𝑁 , if ( 𝑗 = 𝑁 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) , ( 𝑖 𝑊 𝑗 ) ) = ( ( 𝑃 ‘ 𝑖 ) ( 𝐼 ( ( ( 1 ... 𝑁 ) minMatR1 𝑅 ) ‘ 𝑀 ) 𝐽 ) ( 𝑄 ‘ 𝑗 ) ) ) |
118 |
117
|
mpoeq3dva |
⊢ ( 𝜑 → ( 𝑖 ∈ ( 1 ... 𝑁 ) , 𝑗 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑖 = 𝑁 , if ( 𝑗 = 𝑁 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) , ( 𝑖 𝑊 𝑗 ) ) ) = ( 𝑖 ∈ ( 1 ... 𝑁 ) , 𝑗 ∈ ( 1 ... 𝑁 ) ↦ ( ( 𝑃 ‘ 𝑖 ) ( 𝐼 ( ( ( 1 ... 𝑁 ) minMatR1 𝑅 ) ‘ 𝑀 ) 𝐽 ) ( 𝑄 ‘ 𝑗 ) ) ) ) |
119 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
120 |
17
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → 𝑃 ∈ 𝐺 ) |
121 |
72 13
|
symgfv |
⊢ ( ( 𝑃 ∈ 𝐺 ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( 𝑃 ‘ 𝑖 ) ∈ ( 1 ... 𝑁 ) ) |
122 |
120 107 121
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( 𝑃 ‘ 𝑖 ) ∈ ( 1 ... 𝑁 ) ) |
123 |
31
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → 𝑈 ∈ 𝐵 ) |
124 |
2 119 1 122 74 123
|
matecld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑃 ‘ 𝑖 ) 𝑈 ( 𝑄 ‘ 𝑗 ) ) ∈ ( Base ‘ 𝑅 ) ) |
125 |
2 119 1 26 9 124
|
matbas2d |
⊢ ( 𝜑 → ( 𝑖 ∈ ( 1 ... 𝑁 ) , 𝑗 ∈ ( 1 ... 𝑁 ) ↦ ( ( 𝑃 ‘ 𝑖 ) 𝑈 ( 𝑄 ‘ 𝑗 ) ) ) ∈ 𝐵 ) |
126 |
16 125
|
eqeltrid |
⊢ ( 𝜑 → 𝑊 ∈ 𝐵 ) |
127 |
119 51
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
128 |
28 127
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
129 |
|
eqid |
⊢ ( ( 1 ... 𝑁 ) matRRep 𝑅 ) = ( ( 1 ... 𝑁 ) matRRep 𝑅 ) |
130 |
2 1 129 52
|
marrepval |
⊢ ( ( ( 𝑊 ∈ 𝐵 ∧ ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑁 ∈ ( 1 ... 𝑁 ) ∧ 𝑁 ∈ ( 1 ... 𝑁 ) ) ) → ( 𝑁 ( 𝑊 ( ( 1 ... 𝑁 ) matRRep 𝑅 ) ( 1r ‘ 𝑅 ) ) 𝑁 ) = ( 𝑖 ∈ ( 1 ... 𝑁 ) , 𝑗 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑖 = 𝑁 , if ( 𝑗 = 𝑁 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) , ( 𝑖 𝑊 𝑗 ) ) ) ) |
131 |
126 128 93 93 130
|
syl22anc |
⊢ ( 𝜑 → ( 𝑁 ( 𝑊 ( ( 1 ... 𝑁 ) matRRep 𝑅 ) ( 1r ‘ 𝑅 ) ) 𝑁 ) = ( 𝑖 ∈ ( 1 ... 𝑁 ) , 𝑗 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑖 = 𝑁 , if ( 𝑗 = 𝑁 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) , ( 𝑖 𝑊 𝑗 ) ) ) ) |
132 |
114
|
a1i |
⊢ ( 𝜑 → 𝑊 = ( 𝑖 ∈ ( 1 ... 𝑁 ) , 𝑗 ∈ ( 1 ... 𝑁 ) ↦ ( ( 𝑃 ‘ 𝑖 ) ( 𝐼 ( ( ( 1 ... 𝑁 ) minMatR1 𝑅 ) ‘ 𝑀 ) 𝐽 ) ( 𝑄 ‘ 𝑗 ) ) ) ) |
133 |
118 131 132
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝑁 ( 𝑊 ( ( 1 ... 𝑁 ) matRRep 𝑅 ) ( 1r ‘ 𝑅 ) ) 𝑁 ) = 𝑊 ) |
134 |
133
|
fveq2d |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝑁 ( 𝑊 ( ( 1 ... 𝑁 ) matRRep 𝑅 ) ( 1r ‘ 𝑅 ) ) 𝑁 ) ) = ( 𝐷 ‘ 𝑊 ) ) |
135 |
|
eqid |
⊢ ( ( 1 ... 𝑁 ) subMat 𝑅 ) = ( ( 1 ... 𝑁 ) subMat 𝑅 ) |
136 |
2 135 1
|
submaval |
⊢ ( ( 𝑊 ∈ 𝐵 ∧ 𝑁 ∈ ( 1 ... 𝑁 ) ∧ 𝑁 ∈ ( 1 ... 𝑁 ) ) → ( 𝑁 ( ( ( 1 ... 𝑁 ) subMat 𝑅 ) ‘ 𝑊 ) 𝑁 ) = ( 𝑖 ∈ ( ( 1 ... 𝑁 ) ∖ { 𝑁 } ) , 𝑗 ∈ ( ( 1 ... 𝑁 ) ∖ { 𝑁 } ) ↦ ( 𝑖 𝑊 𝑗 ) ) ) |
137 |
126 93 93 136
|
syl3anc |
⊢ ( 𝜑 → ( 𝑁 ( ( ( 1 ... 𝑁 ) subMat 𝑅 ) ‘ 𝑊 ) 𝑁 ) = ( 𝑖 ∈ ( ( 1 ... 𝑁 ) ∖ { 𝑁 } ) , 𝑗 ∈ ( ( 1 ... 𝑁 ) ∖ { 𝑁 } ) ↦ ( 𝑖 𝑊 𝑗 ) ) ) |
138 |
|
fzdif2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 1 ) → ( ( 1 ... 𝑁 ) ∖ { 𝑁 } ) = ( 1 ... ( 𝑁 − 1 ) ) ) |
139 |
91 138
|
syl |
⊢ ( 𝜑 → ( ( 1 ... 𝑁 ) ∖ { 𝑁 } ) = ( 1 ... ( 𝑁 − 1 ) ) ) |
140 |
|
mpoeq12 |
⊢ ( ( ( ( 1 ... 𝑁 ) ∖ { 𝑁 } ) = ( 1 ... ( 𝑁 − 1 ) ) ∧ ( ( 1 ... 𝑁 ) ∖ { 𝑁 } ) = ( 1 ... ( 𝑁 − 1 ) ) ) → ( 𝑖 ∈ ( ( 1 ... 𝑁 ) ∖ { 𝑁 } ) , 𝑗 ∈ ( ( 1 ... 𝑁 ) ∖ { 𝑁 } ) ↦ ( 𝑖 𝑊 𝑗 ) ) = ( 𝑖 ∈ ( 1 ... ( 𝑁 − 1 ) ) , 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ ( 𝑖 𝑊 𝑗 ) ) ) |
141 |
139 139 140
|
syl2anc |
⊢ ( 𝜑 → ( 𝑖 ∈ ( ( 1 ... 𝑁 ) ∖ { 𝑁 } ) , 𝑗 ∈ ( ( 1 ... 𝑁 ) ∖ { 𝑁 } ) ↦ ( 𝑖 𝑊 𝑗 ) ) = ( 𝑖 ∈ ( 1 ... ( 𝑁 − 1 ) ) , 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ ( 𝑖 𝑊 𝑗 ) ) ) |
142 |
137 141
|
eqtrd |
⊢ ( 𝜑 → ( 𝑁 ( ( ( 1 ... 𝑁 ) subMat 𝑅 ) ‘ 𝑊 ) 𝑁 ) = ( 𝑖 ∈ ( 1 ... ( 𝑁 − 1 ) ) , 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ ( 𝑖 𝑊 𝑗 ) ) ) |
143 |
|
difssd |
⊢ ( 𝜑 → ( ( 1 ... 𝑁 ) ∖ { 𝑁 } ) ⊆ ( 1 ... 𝑁 ) ) |
144 |
139 143
|
eqsstrrd |
⊢ ( 𝜑 → ( 1 ... ( 𝑁 − 1 ) ) ⊆ ( 1 ... 𝑁 ) ) |
145 |
2 1
|
submabas |
⊢ ( ( 𝑊 ∈ 𝐵 ∧ ( 1 ... ( 𝑁 − 1 ) ) ⊆ ( 1 ... 𝑁 ) ) → ( 𝑖 ∈ ( 1 ... ( 𝑁 − 1 ) ) , 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ ( 𝑖 𝑊 𝑗 ) ) ∈ ( Base ‘ ( ( 1 ... ( 𝑁 − 1 ) ) Mat 𝑅 ) ) ) |
146 |
126 144 145
|
syl2anc |
⊢ ( 𝜑 → ( 𝑖 ∈ ( 1 ... ( 𝑁 − 1 ) ) , 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ ( 𝑖 𝑊 𝑗 ) ) ∈ ( Base ‘ ( ( 1 ... ( 𝑁 − 1 ) ) Mat 𝑅 ) ) ) |
147 |
142 146
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑁 ( ( ( 1 ... 𝑁 ) subMat 𝑅 ) ‘ 𝑊 ) 𝑁 ) ∈ ( Base ‘ ( ( 1 ... ( 𝑁 − 1 ) ) Mat 𝑅 ) ) ) |
148 |
|
eqid |
⊢ ( ( 1 ... ( 𝑁 − 1 ) ) Mat 𝑅 ) = ( ( 1 ... ( 𝑁 − 1 ) ) Mat 𝑅 ) |
149 |
|
eqid |
⊢ ( Base ‘ ( ( 1 ... ( 𝑁 − 1 ) ) Mat 𝑅 ) ) = ( Base ‘ ( ( 1 ... ( 𝑁 − 1 ) ) Mat 𝑅 ) ) |
150 |
7 148 149 119
|
mdetcl |
⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 ( ( ( 1 ... 𝑁 ) subMat 𝑅 ) ‘ 𝑊 ) 𝑁 ) ∈ ( Base ‘ ( ( 1 ... ( 𝑁 − 1 ) ) Mat 𝑅 ) ) ) → ( 𝐸 ‘ ( 𝑁 ( ( ( 1 ... 𝑁 ) subMat 𝑅 ) ‘ 𝑊 ) 𝑁 ) ) ∈ ( Base ‘ 𝑅 ) ) |
151 |
9 147 150
|
syl2anc |
⊢ ( 𝜑 → ( 𝐸 ‘ ( 𝑁 ( ( ( 1 ... 𝑁 ) subMat 𝑅 ) ‘ 𝑊 ) 𝑁 ) ) ∈ ( Base ‘ 𝑅 ) ) |
152 |
119 5 51
|
ringlidm |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐸 ‘ ( 𝑁 ( ( ( 1 ... 𝑁 ) subMat 𝑅 ) ‘ 𝑊 ) 𝑁 ) ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 1r ‘ 𝑅 ) · ( 𝐸 ‘ ( 𝑁 ( ( ( 1 ... 𝑁 ) subMat 𝑅 ) ‘ 𝑊 ) 𝑁 ) ) ) = ( 𝐸 ‘ ( 𝑁 ( ( ( 1 ... 𝑁 ) subMat 𝑅 ) ‘ 𝑊 ) 𝑁 ) ) ) |
153 |
28 151 152
|
syl2anc |
⊢ ( 𝜑 → ( ( 1r ‘ 𝑅 ) · ( 𝐸 ‘ ( 𝑁 ( ( ( 1 ... 𝑁 ) subMat 𝑅 ) ‘ 𝑊 ) 𝑁 ) ) ) = ( 𝐸 ‘ ( 𝑁 ( ( ( 1 ... 𝑁 ) subMat 𝑅 ) ‘ 𝑊 ) 𝑁 ) ) ) |
154 |
2
|
fveq2i |
⊢ ( Base ‘ 𝐴 ) = ( Base ‘ ( ( 1 ... 𝑁 ) Mat 𝑅 ) ) |
155 |
1 154
|
eqtri |
⊢ 𝐵 = ( Base ‘ ( ( 1 ... 𝑁 ) Mat 𝑅 ) ) |
156 |
126 155
|
eleqtrdi |
⊢ ( 𝜑 → 𝑊 ∈ ( Base ‘ ( ( 1 ... 𝑁 ) Mat 𝑅 ) ) ) |
157 |
|
smadiadetr |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑊 ∈ ( Base ‘ ( ( 1 ... 𝑁 ) Mat 𝑅 ) ) ) ∧ ( 𝑁 ∈ ( 1 ... 𝑁 ) ∧ ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) ) → ( ( ( 1 ... 𝑁 ) maDet 𝑅 ) ‘ ( 𝑁 ( 𝑊 ( ( 1 ... 𝑁 ) matRRep 𝑅 ) ( 1r ‘ 𝑅 ) ) 𝑁 ) ) = ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) ( ( ( ( 1 ... 𝑁 ) ∖ { 𝑁 } ) maDet 𝑅 ) ‘ ( 𝑁 ( ( ( 1 ... 𝑁 ) subMat 𝑅 ) ‘ 𝑊 ) 𝑁 ) ) ) ) |
158 |
9 156 93 128 157
|
syl22anc |
⊢ ( 𝜑 → ( ( ( 1 ... 𝑁 ) maDet 𝑅 ) ‘ ( 𝑁 ( 𝑊 ( ( 1 ... 𝑁 ) matRRep 𝑅 ) ( 1r ‘ 𝑅 ) ) 𝑁 ) ) = ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) ( ( ( ( 1 ... 𝑁 ) ∖ { 𝑁 } ) maDet 𝑅 ) ‘ ( 𝑁 ( ( ( 1 ... 𝑁 ) subMat 𝑅 ) ‘ 𝑊 ) 𝑁 ) ) ) ) |
159 |
3
|
fveq1i |
⊢ ( 𝐷 ‘ ( 𝑁 ( 𝑊 ( ( 1 ... 𝑁 ) matRRep 𝑅 ) ( 1r ‘ 𝑅 ) ) 𝑁 ) ) = ( ( ( 1 ... 𝑁 ) maDet 𝑅 ) ‘ ( 𝑁 ( 𝑊 ( ( 1 ... 𝑁 ) matRRep 𝑅 ) ( 1r ‘ 𝑅 ) ) 𝑁 ) ) |
160 |
5
|
oveqi |
⊢ ( ( 1r ‘ 𝑅 ) · ( ( ( ( 1 ... 𝑁 ) ∖ { 𝑁 } ) maDet 𝑅 ) ‘ ( 𝑁 ( ( ( 1 ... 𝑁 ) subMat 𝑅 ) ‘ 𝑊 ) 𝑁 ) ) ) = ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) ( ( ( ( 1 ... 𝑁 ) ∖ { 𝑁 } ) maDet 𝑅 ) ‘ ( 𝑁 ( ( ( 1 ... 𝑁 ) subMat 𝑅 ) ‘ 𝑊 ) 𝑁 ) ) ) |
161 |
159 160
|
eqeq12i |
⊢ ( ( 𝐷 ‘ ( 𝑁 ( 𝑊 ( ( 1 ... 𝑁 ) matRRep 𝑅 ) ( 1r ‘ 𝑅 ) ) 𝑁 ) ) = ( ( 1r ‘ 𝑅 ) · ( ( ( ( 1 ... 𝑁 ) ∖ { 𝑁 } ) maDet 𝑅 ) ‘ ( 𝑁 ( ( ( 1 ... 𝑁 ) subMat 𝑅 ) ‘ 𝑊 ) 𝑁 ) ) ) ↔ ( ( ( 1 ... 𝑁 ) maDet 𝑅 ) ‘ ( 𝑁 ( 𝑊 ( ( 1 ... 𝑁 ) matRRep 𝑅 ) ( 1r ‘ 𝑅 ) ) 𝑁 ) ) = ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) ( ( ( ( 1 ... 𝑁 ) ∖ { 𝑁 } ) maDet 𝑅 ) ‘ ( 𝑁 ( ( ( 1 ... 𝑁 ) subMat 𝑅 ) ‘ 𝑊 ) 𝑁 ) ) ) ) |
162 |
158 161
|
sylibr |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝑁 ( 𝑊 ( ( 1 ... 𝑁 ) matRRep 𝑅 ) ( 1r ‘ 𝑅 ) ) 𝑁 ) ) = ( ( 1r ‘ 𝑅 ) · ( ( ( ( 1 ... 𝑁 ) ∖ { 𝑁 } ) maDet 𝑅 ) ‘ ( 𝑁 ( ( ( 1 ... 𝑁 ) subMat 𝑅 ) ‘ 𝑊 ) 𝑁 ) ) ) ) |
163 |
139
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 1 ... 𝑁 ) ∖ { 𝑁 } ) maDet 𝑅 ) = ( ( 1 ... ( 𝑁 − 1 ) ) maDet 𝑅 ) ) |
164 |
163 7
|
eqtr4di |
⊢ ( 𝜑 → ( ( ( 1 ... 𝑁 ) ∖ { 𝑁 } ) maDet 𝑅 ) = 𝐸 ) |
165 |
164
|
fveq1d |
⊢ ( 𝜑 → ( ( ( ( 1 ... 𝑁 ) ∖ { 𝑁 } ) maDet 𝑅 ) ‘ ( 𝑁 ( ( ( 1 ... 𝑁 ) subMat 𝑅 ) ‘ 𝑊 ) 𝑁 ) ) = ( 𝐸 ‘ ( 𝑁 ( ( ( 1 ... 𝑁 ) subMat 𝑅 ) ‘ 𝑊 ) 𝑁 ) ) ) |
166 |
165
|
oveq2d |
⊢ ( 𝜑 → ( ( 1r ‘ 𝑅 ) · ( ( ( ( 1 ... 𝑁 ) ∖ { 𝑁 } ) maDet 𝑅 ) ‘ ( 𝑁 ( ( ( 1 ... 𝑁 ) subMat 𝑅 ) ‘ 𝑊 ) 𝑁 ) ) ) = ( ( 1r ‘ 𝑅 ) · ( 𝐸 ‘ ( 𝑁 ( ( ( 1 ... 𝑁 ) subMat 𝑅 ) ‘ 𝑊 ) 𝑁 ) ) ) ) |
167 |
162 166
|
eqtrd |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝑁 ( 𝑊 ( ( 1 ... 𝑁 ) matRRep 𝑅 ) ( 1r ‘ 𝑅 ) ) 𝑁 ) ) = ( ( 1r ‘ 𝑅 ) · ( 𝐸 ‘ ( 𝑁 ( ( ( 1 ... 𝑁 ) subMat 𝑅 ) ‘ 𝑊 ) 𝑁 ) ) ) ) |
168 |
2 1
|
submat1n |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑊 ∈ 𝐵 ) → ( 𝑁 ( subMat1 ‘ 𝑊 ) 𝑁 ) = ( 𝑁 ( ( ( 1 ... 𝑁 ) subMat 𝑅 ) ‘ 𝑊 ) 𝑁 ) ) |
169 |
8 126 168
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ( subMat1 ‘ 𝑊 ) 𝑁 ) = ( 𝑁 ( ( ( 1 ... 𝑁 ) subMat 𝑅 ) ‘ 𝑊 ) 𝑁 ) ) |
170 |
169
|
fveq2d |
⊢ ( 𝜑 → ( 𝐸 ‘ ( 𝑁 ( subMat1 ‘ 𝑊 ) 𝑁 ) ) = ( 𝐸 ‘ ( 𝑁 ( ( ( 1 ... 𝑁 ) subMat 𝑅 ) ‘ 𝑊 ) 𝑁 ) ) ) |
171 |
153 167 170
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝑁 ( 𝑊 ( ( 1 ... 𝑁 ) matRRep 𝑅 ) ( 1r ‘ 𝑅 ) ) 𝑁 ) ) = ( 𝐸 ‘ ( 𝑁 ( subMat1 ‘ 𝑊 ) 𝑁 ) ) ) |
172 |
134 171
|
eqtr3d |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝑊 ) = ( 𝐸 ‘ ( 𝑁 ( subMat1 ‘ 𝑊 ) 𝑁 ) ) ) |
173 |
2 1 8 10 11 28 12 15
|
submatminr1 |
⊢ ( 𝜑 → ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝐽 ) = ( 𝐼 ( subMat1 ‘ 𝑈 ) 𝐽 ) ) |
174 |
173 21
|
eqtrd |
⊢ ( 𝜑 → ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝐽 ) = ( 𝑁 ( subMat1 ‘ 𝑊 ) 𝑁 ) ) |
175 |
174
|
fveq2d |
⊢ ( 𝜑 → ( 𝐸 ‘ ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝐽 ) ) = ( 𝐸 ‘ ( 𝑁 ( subMat1 ‘ 𝑊 ) 𝑁 ) ) ) |
176 |
172 175
|
eqtr4d |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝑊 ) = ( 𝐸 ‘ ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝐽 ) ) ) |
177 |
176
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝑍 ‘ ( ( 𝑆 ‘ 𝑃 ) · ( 𝑆 ‘ 𝑄 ) ) ) · ( 𝐷 ‘ 𝑊 ) ) = ( ( 𝑍 ‘ ( ( 𝑆 ‘ 𝑃 ) · ( 𝑆 ‘ 𝑄 ) ) ) · ( 𝐸 ‘ ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝐽 ) ) ) ) |
178 |
25 32 177
|
3eqtrd |
⊢ ( 𝜑 → ( 𝐽 ( 𝐾 ‘ 𝑀 ) 𝐼 ) = ( ( 𝑍 ‘ ( ( 𝑆 ‘ 𝑃 ) · ( 𝑆 ‘ 𝑄 ) ) ) · ( 𝐸 ‘ ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝐽 ) ) ) ) |