| Step | Hyp | Ref | Expression | 
						
							| 1 |  | submateq.a | ⊢ 𝐴  =  ( ( 1 ... 𝑁 )  Mat  𝑅 ) | 
						
							| 2 |  | submateq.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 3 |  | submateq.n | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 4 |  | submateq.i | ⊢ ( 𝜑  →  𝐼  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 5 |  | submateq.j | ⊢ ( 𝜑  →  𝐽  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 6 |  | submatminr1.r | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 7 |  | submatminr1.m | ⊢ ( 𝜑  →  𝑀  ∈  𝐵 ) | 
						
							| 8 |  | submatminr1.e | ⊢ 𝐸  =  ( 𝐼 ( ( ( 1 ... 𝑁 )  minMatR1  𝑅 ) ‘ 𝑀 ) 𝐽 ) | 
						
							| 9 |  | eqid | ⊢ ( 1r ‘ 𝑅 )  =  ( 1r ‘ 𝑅 ) | 
						
							| 10 | 1 2 9 | minmar1marrep | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( ( ( 1 ... 𝑁 )  minMatR1  𝑅 ) ‘ 𝑀 )  =  ( 𝑀 ( ( 1 ... 𝑁 )  matRRep  𝑅 ) ( 1r ‘ 𝑅 ) ) ) | 
						
							| 11 | 6 7 10 | syl2anc | ⊢ ( 𝜑  →  ( ( ( 1 ... 𝑁 )  minMatR1  𝑅 ) ‘ 𝑀 )  =  ( 𝑀 ( ( 1 ... 𝑁 )  matRRep  𝑅 ) ( 1r ‘ 𝑅 ) ) ) | 
						
							| 12 | 11 | oveqd | ⊢ ( 𝜑  →  ( 𝐼 ( ( ( 1 ... 𝑁 )  minMatR1  𝑅 ) ‘ 𝑀 ) 𝐽 )  =  ( 𝐼 ( 𝑀 ( ( 1 ... 𝑁 )  matRRep  𝑅 ) ( 1r ‘ 𝑅 ) ) 𝐽 ) ) | 
						
							| 13 | 8 12 | eqtrid | ⊢ ( 𝜑  →  𝐸  =  ( 𝐼 ( 𝑀 ( ( 1 ... 𝑁 )  matRRep  𝑅 ) ( 1r ‘ 𝑅 ) ) 𝐽 ) ) | 
						
							| 14 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 15 | 14 9 | ringidcl | ⊢ ( 𝑅  ∈  Ring  →  ( 1r ‘ 𝑅 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 16 | 6 15 | syl | ⊢ ( 𝜑  →  ( 1r ‘ 𝑅 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 17 | 1 2 | marrepcl | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵  ∧  ( 1r ‘ 𝑅 )  ∈  ( Base ‘ 𝑅 ) )  ∧  ( 𝐼  ∈  ( 1 ... 𝑁 )  ∧  𝐽  ∈  ( 1 ... 𝑁 ) ) )  →  ( 𝐼 ( 𝑀 ( ( 1 ... 𝑁 )  matRRep  𝑅 ) ( 1r ‘ 𝑅 ) ) 𝐽 )  ∈  𝐵 ) | 
						
							| 18 | 6 7 16 4 5 17 | syl32anc | ⊢ ( 𝜑  →  ( 𝐼 ( 𝑀 ( ( 1 ... 𝑁 )  matRRep  𝑅 ) ( 1r ‘ 𝑅 ) ) 𝐽 )  ∈  𝐵 ) | 
						
							| 19 | 13 18 | eqeltrd | ⊢ ( 𝜑  →  𝐸  ∈  𝐵 ) | 
						
							| 20 | 13 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐼 } )  ∧  𝑗  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐽 } ) )  →  𝐸  =  ( 𝐼 ( 𝑀 ( ( 1 ... 𝑁 )  matRRep  𝑅 ) ( 1r ‘ 𝑅 ) ) 𝐽 ) ) | 
						
							| 21 | 20 | oveqd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐼 } )  ∧  𝑗  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐽 } ) )  →  ( 𝑖 𝐸 𝑗 )  =  ( 𝑖 ( 𝐼 ( 𝑀 ( ( 1 ... 𝑁 )  matRRep  𝑅 ) ( 1r ‘ 𝑅 ) ) 𝐽 ) 𝑗 ) ) | 
						
							| 22 | 7 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐼 } )  ∧  𝑗  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐽 } ) )  →  𝑀  ∈  𝐵 ) | 
						
							| 23 | 16 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐼 } )  ∧  𝑗  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐽 } ) )  →  ( 1r ‘ 𝑅 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 24 | 4 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐼 } )  ∧  𝑗  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐽 } ) )  →  𝐼  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 25 | 5 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐼 } )  ∧  𝑗  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐽 } ) )  →  𝐽  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 26 |  | simp2 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐼 } )  ∧  𝑗  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐽 } ) )  →  𝑖  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐼 } ) ) | 
						
							| 27 | 26 | eldifad | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐼 } )  ∧  𝑗  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐽 } ) )  →  𝑖  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 28 |  | simp3 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐼 } )  ∧  𝑗  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐽 } ) )  →  𝑗  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐽 } ) ) | 
						
							| 29 | 28 | eldifad | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐼 } )  ∧  𝑗  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐽 } ) )  →  𝑗  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 30 |  | eqid | ⊢ ( ( 1 ... 𝑁 )  matRRep  𝑅 )  =  ( ( 1 ... 𝑁 )  matRRep  𝑅 ) | 
						
							| 31 |  | eqid | ⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 ) | 
						
							| 32 | 1 2 30 31 | marrepeval | ⊢ ( ( ( 𝑀  ∈  𝐵  ∧  ( 1r ‘ 𝑅 )  ∈  ( Base ‘ 𝑅 ) )  ∧  ( 𝐼  ∈  ( 1 ... 𝑁 )  ∧  𝐽  ∈  ( 1 ... 𝑁 ) )  ∧  ( 𝑖  ∈  ( 1 ... 𝑁 )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) ) )  →  ( 𝑖 ( 𝐼 ( 𝑀 ( ( 1 ... 𝑁 )  matRRep  𝑅 ) ( 1r ‘ 𝑅 ) ) 𝐽 ) 𝑗 )  =  if ( 𝑖  =  𝐼 ,  if ( 𝑗  =  𝐽 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) ,  ( 𝑖 𝑀 𝑗 ) ) ) | 
						
							| 33 | 22 23 24 25 27 29 32 | syl222anc | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐼 } )  ∧  𝑗  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐽 } ) )  →  ( 𝑖 ( 𝐼 ( 𝑀 ( ( 1 ... 𝑁 )  matRRep  𝑅 ) ( 1r ‘ 𝑅 ) ) 𝐽 ) 𝑗 )  =  if ( 𝑖  =  𝐼 ,  if ( 𝑗  =  𝐽 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) ,  ( 𝑖 𝑀 𝑗 ) ) ) | 
						
							| 34 |  | eldifsn | ⊢ ( 𝑖  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐼 } )  ↔  ( 𝑖  ∈  ( 1 ... 𝑁 )  ∧  𝑖  ≠  𝐼 ) ) | 
						
							| 35 | 26 34 | sylib | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐼 } )  ∧  𝑗  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐽 } ) )  →  ( 𝑖  ∈  ( 1 ... 𝑁 )  ∧  𝑖  ≠  𝐼 ) ) | 
						
							| 36 | 35 | simprd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐼 } )  ∧  𝑗  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐽 } ) )  →  𝑖  ≠  𝐼 ) | 
						
							| 37 | 36 | neneqd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐼 } )  ∧  𝑗  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐽 } ) )  →  ¬  𝑖  =  𝐼 ) | 
						
							| 38 | 37 | iffalsed | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐼 } )  ∧  𝑗  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐽 } ) )  →  if ( 𝑖  =  𝐼 ,  if ( 𝑗  =  𝐽 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) ,  ( 𝑖 𝑀 𝑗 ) )  =  ( 𝑖 𝑀 𝑗 ) ) | 
						
							| 39 | 21 33 38 | 3eqtrrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐼 } )  ∧  𝑗  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐽 } ) )  →  ( 𝑖 𝑀 𝑗 )  =  ( 𝑖 𝐸 𝑗 ) ) | 
						
							| 40 | 1 2 3 4 5 7 19 39 | submateq | ⊢ ( 𝜑  →  ( 𝐼 ( subMat1 ‘ 𝑀 ) 𝐽 )  =  ( 𝐼 ( subMat1 ‘ 𝐸 ) 𝐽 ) ) |