Description: If we take a submatrix by removing the row I and column J , then the result is the same on the matrix with row I and column J modified by the minMatR1 operator. (Contributed by Thierry Arnoux, 25-Aug-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | submateq.a | |
|
submateq.b | |
||
submateq.n | |
||
submateq.i | |
||
submateq.j | |
||
submatminr1.r | |
||
submatminr1.m | |
||
submatminr1.e | |
||
Assertion | submatminr1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | submateq.a | |
|
2 | submateq.b | |
|
3 | submateq.n | |
|
4 | submateq.i | |
|
5 | submateq.j | |
|
6 | submatminr1.r | |
|
7 | submatminr1.m | |
|
8 | submatminr1.e | |
|
9 | eqid | |
|
10 | 1 2 9 | minmar1marrep | |
11 | 6 7 10 | syl2anc | |
12 | 11 | oveqd | |
13 | 8 12 | eqtrid | |
14 | eqid | |
|
15 | 14 9 | ringidcl | |
16 | 6 15 | syl | |
17 | 1 2 | marrepcl | |
18 | 6 7 16 4 5 17 | syl32anc | |
19 | 13 18 | eqeltrd | |
20 | 13 | 3ad2ant1 | |
21 | 20 | oveqd | |
22 | 7 | 3ad2ant1 | |
23 | 16 | 3ad2ant1 | |
24 | 4 | 3ad2ant1 | |
25 | 5 | 3ad2ant1 | |
26 | simp2 | |
|
27 | 26 | eldifad | |
28 | simp3 | |
|
29 | 28 | eldifad | |
30 | eqid | |
|
31 | eqid | |
|
32 | 1 2 30 31 | marrepeval | |
33 | 22 23 24 25 27 29 32 | syl222anc | |
34 | eldifsn | |
|
35 | 26 34 | sylib | |
36 | 35 | simprd | |
37 | 36 | neneqd | |
38 | 37 | iffalsed | |
39 | 21 33 38 | 3eqtrrd | |
40 | 1 2 3 4 5 7 19 39 | submateq | |