| Step | Hyp | Ref | Expression | 
						
							| 1 |  | submateq.a |  | 
						
							| 2 |  | submateq.b |  | 
						
							| 3 |  | submateq.n |  | 
						
							| 4 |  | submateq.i |  | 
						
							| 5 |  | submateq.j |  | 
						
							| 6 |  | submatminr1.r |  | 
						
							| 7 |  | submatminr1.m |  | 
						
							| 8 |  | submatminr1.e |  | 
						
							| 9 |  | eqid |  | 
						
							| 10 | 1 2 9 | minmar1marrep |  | 
						
							| 11 | 6 7 10 | syl2anc |  | 
						
							| 12 | 11 | oveqd |  | 
						
							| 13 | 8 12 | eqtrid |  | 
						
							| 14 |  | eqid |  | 
						
							| 15 | 14 9 | ringidcl |  | 
						
							| 16 | 6 15 | syl |  | 
						
							| 17 | 1 2 | marrepcl |  | 
						
							| 18 | 6 7 16 4 5 17 | syl32anc |  | 
						
							| 19 | 13 18 | eqeltrd |  | 
						
							| 20 | 13 | 3ad2ant1 |  | 
						
							| 21 | 20 | oveqd |  | 
						
							| 22 | 7 | 3ad2ant1 |  | 
						
							| 23 | 16 | 3ad2ant1 |  | 
						
							| 24 | 4 | 3ad2ant1 |  | 
						
							| 25 | 5 | 3ad2ant1 |  | 
						
							| 26 |  | simp2 |  | 
						
							| 27 | 26 | eldifad |  | 
						
							| 28 |  | simp3 |  | 
						
							| 29 | 28 | eldifad |  | 
						
							| 30 |  | eqid |  | 
						
							| 31 |  | eqid |  | 
						
							| 32 | 1 2 30 31 | marrepeval |  | 
						
							| 33 | 22 23 24 25 27 29 32 | syl222anc |  | 
						
							| 34 |  | eldifsn |  | 
						
							| 35 | 26 34 | sylib |  | 
						
							| 36 | 35 | simprd |  | 
						
							| 37 | 36 | neneqd |  | 
						
							| 38 | 37 | iffalsed |  | 
						
							| 39 | 21 33 38 | 3eqtrrd |  | 
						
							| 40 | 1 2 3 4 5 7 19 39 | submateq |  |