| Step |
Hyp |
Ref |
Expression |
| 1 |
|
submateq.a |
|
| 2 |
|
submateq.b |
|
| 3 |
|
submateq.n |
|
| 4 |
|
submateq.i |
|
| 5 |
|
submateq.j |
|
| 6 |
|
submatminr1.r |
|
| 7 |
|
submatminr1.m |
|
| 8 |
|
submatminr1.e |
|
| 9 |
|
eqid |
|
| 10 |
1 2 9
|
minmar1marrep |
|
| 11 |
6 7 10
|
syl2anc |
|
| 12 |
11
|
oveqd |
|
| 13 |
8 12
|
eqtrid |
|
| 14 |
|
eqid |
|
| 15 |
14 9
|
ringidcl |
|
| 16 |
6 15
|
syl |
|
| 17 |
1 2
|
marrepcl |
|
| 18 |
6 7 16 4 5 17
|
syl32anc |
|
| 19 |
13 18
|
eqeltrd |
|
| 20 |
13
|
3ad2ant1 |
|
| 21 |
20
|
oveqd |
|
| 22 |
7
|
3ad2ant1 |
|
| 23 |
16
|
3ad2ant1 |
|
| 24 |
4
|
3ad2ant1 |
|
| 25 |
5
|
3ad2ant1 |
|
| 26 |
|
simp2 |
|
| 27 |
26
|
eldifad |
|
| 28 |
|
simp3 |
|
| 29 |
28
|
eldifad |
|
| 30 |
|
eqid |
|
| 31 |
|
eqid |
|
| 32 |
1 2 30 31
|
marrepeval |
|
| 33 |
22 23 24 25 27 29 32
|
syl222anc |
|
| 34 |
|
eldifsn |
|
| 35 |
26 34
|
sylib |
|
| 36 |
35
|
simprd |
|
| 37 |
36
|
neneqd |
|
| 38 |
37
|
iffalsed |
|
| 39 |
21 33 38
|
3eqtrrd |
|
| 40 |
1 2 3 4 5 7 19 39
|
submateq |
|