Step |
Hyp |
Ref |
Expression |
1 |
|
submateq.a |
|- A = ( ( 1 ... N ) Mat R ) |
2 |
|
submateq.b |
|- B = ( Base ` A ) |
3 |
|
submateq.n |
|- ( ph -> N e. NN ) |
4 |
|
submateq.i |
|- ( ph -> I e. ( 1 ... N ) ) |
5 |
|
submateq.j |
|- ( ph -> J e. ( 1 ... N ) ) |
6 |
|
submatminr1.r |
|- ( ph -> R e. Ring ) |
7 |
|
submatminr1.m |
|- ( ph -> M e. B ) |
8 |
|
submatminr1.e |
|- E = ( I ( ( ( 1 ... N ) minMatR1 R ) ` M ) J ) |
9 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
10 |
1 2 9
|
minmar1marrep |
|- ( ( R e. Ring /\ M e. B ) -> ( ( ( 1 ... N ) minMatR1 R ) ` M ) = ( M ( ( 1 ... N ) matRRep R ) ( 1r ` R ) ) ) |
11 |
6 7 10
|
syl2anc |
|- ( ph -> ( ( ( 1 ... N ) minMatR1 R ) ` M ) = ( M ( ( 1 ... N ) matRRep R ) ( 1r ` R ) ) ) |
12 |
11
|
oveqd |
|- ( ph -> ( I ( ( ( 1 ... N ) minMatR1 R ) ` M ) J ) = ( I ( M ( ( 1 ... N ) matRRep R ) ( 1r ` R ) ) J ) ) |
13 |
8 12
|
syl5eq |
|- ( ph -> E = ( I ( M ( ( 1 ... N ) matRRep R ) ( 1r ` R ) ) J ) ) |
14 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
15 |
14 9
|
ringidcl |
|- ( R e. Ring -> ( 1r ` R ) e. ( Base ` R ) ) |
16 |
6 15
|
syl |
|- ( ph -> ( 1r ` R ) e. ( Base ` R ) ) |
17 |
1 2
|
marrepcl |
|- ( ( ( R e. Ring /\ M e. B /\ ( 1r ` R ) e. ( Base ` R ) ) /\ ( I e. ( 1 ... N ) /\ J e. ( 1 ... N ) ) ) -> ( I ( M ( ( 1 ... N ) matRRep R ) ( 1r ` R ) ) J ) e. B ) |
18 |
6 7 16 4 5 17
|
syl32anc |
|- ( ph -> ( I ( M ( ( 1 ... N ) matRRep R ) ( 1r ` R ) ) J ) e. B ) |
19 |
13 18
|
eqeltrd |
|- ( ph -> E e. B ) |
20 |
13
|
3ad2ant1 |
|- ( ( ph /\ i e. ( ( 1 ... N ) \ { I } ) /\ j e. ( ( 1 ... N ) \ { J } ) ) -> E = ( I ( M ( ( 1 ... N ) matRRep R ) ( 1r ` R ) ) J ) ) |
21 |
20
|
oveqd |
|- ( ( ph /\ i e. ( ( 1 ... N ) \ { I } ) /\ j e. ( ( 1 ... N ) \ { J } ) ) -> ( i E j ) = ( i ( I ( M ( ( 1 ... N ) matRRep R ) ( 1r ` R ) ) J ) j ) ) |
22 |
7
|
3ad2ant1 |
|- ( ( ph /\ i e. ( ( 1 ... N ) \ { I } ) /\ j e. ( ( 1 ... N ) \ { J } ) ) -> M e. B ) |
23 |
16
|
3ad2ant1 |
|- ( ( ph /\ i e. ( ( 1 ... N ) \ { I } ) /\ j e. ( ( 1 ... N ) \ { J } ) ) -> ( 1r ` R ) e. ( Base ` R ) ) |
24 |
4
|
3ad2ant1 |
|- ( ( ph /\ i e. ( ( 1 ... N ) \ { I } ) /\ j e. ( ( 1 ... N ) \ { J } ) ) -> I e. ( 1 ... N ) ) |
25 |
5
|
3ad2ant1 |
|- ( ( ph /\ i e. ( ( 1 ... N ) \ { I } ) /\ j e. ( ( 1 ... N ) \ { J } ) ) -> J e. ( 1 ... N ) ) |
26 |
|
simp2 |
|- ( ( ph /\ i e. ( ( 1 ... N ) \ { I } ) /\ j e. ( ( 1 ... N ) \ { J } ) ) -> i e. ( ( 1 ... N ) \ { I } ) ) |
27 |
26
|
eldifad |
|- ( ( ph /\ i e. ( ( 1 ... N ) \ { I } ) /\ j e. ( ( 1 ... N ) \ { J } ) ) -> i e. ( 1 ... N ) ) |
28 |
|
simp3 |
|- ( ( ph /\ i e. ( ( 1 ... N ) \ { I } ) /\ j e. ( ( 1 ... N ) \ { J } ) ) -> j e. ( ( 1 ... N ) \ { J } ) ) |
29 |
28
|
eldifad |
|- ( ( ph /\ i e. ( ( 1 ... N ) \ { I } ) /\ j e. ( ( 1 ... N ) \ { J } ) ) -> j e. ( 1 ... N ) ) |
30 |
|
eqid |
|- ( ( 1 ... N ) matRRep R ) = ( ( 1 ... N ) matRRep R ) |
31 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
32 |
1 2 30 31
|
marrepeval |
|- ( ( ( M e. B /\ ( 1r ` R ) e. ( Base ` R ) ) /\ ( I e. ( 1 ... N ) /\ J e. ( 1 ... N ) ) /\ ( i e. ( 1 ... N ) /\ j e. ( 1 ... N ) ) ) -> ( i ( I ( M ( ( 1 ... N ) matRRep R ) ( 1r ` R ) ) J ) j ) = if ( i = I , if ( j = J , ( 1r ` R ) , ( 0g ` R ) ) , ( i M j ) ) ) |
33 |
22 23 24 25 27 29 32
|
syl222anc |
|- ( ( ph /\ i e. ( ( 1 ... N ) \ { I } ) /\ j e. ( ( 1 ... N ) \ { J } ) ) -> ( i ( I ( M ( ( 1 ... N ) matRRep R ) ( 1r ` R ) ) J ) j ) = if ( i = I , if ( j = J , ( 1r ` R ) , ( 0g ` R ) ) , ( i M j ) ) ) |
34 |
|
eldifsn |
|- ( i e. ( ( 1 ... N ) \ { I } ) <-> ( i e. ( 1 ... N ) /\ i =/= I ) ) |
35 |
26 34
|
sylib |
|- ( ( ph /\ i e. ( ( 1 ... N ) \ { I } ) /\ j e. ( ( 1 ... N ) \ { J } ) ) -> ( i e. ( 1 ... N ) /\ i =/= I ) ) |
36 |
35
|
simprd |
|- ( ( ph /\ i e. ( ( 1 ... N ) \ { I } ) /\ j e. ( ( 1 ... N ) \ { J } ) ) -> i =/= I ) |
37 |
36
|
neneqd |
|- ( ( ph /\ i e. ( ( 1 ... N ) \ { I } ) /\ j e. ( ( 1 ... N ) \ { J } ) ) -> -. i = I ) |
38 |
37
|
iffalsed |
|- ( ( ph /\ i e. ( ( 1 ... N ) \ { I } ) /\ j e. ( ( 1 ... N ) \ { J } ) ) -> if ( i = I , if ( j = J , ( 1r ` R ) , ( 0g ` R ) ) , ( i M j ) ) = ( i M j ) ) |
39 |
21 33 38
|
3eqtrrd |
|- ( ( ph /\ i e. ( ( 1 ... N ) \ { I } ) /\ j e. ( ( 1 ... N ) \ { J } ) ) -> ( i M j ) = ( i E j ) ) |
40 |
1 2 3 4 5 7 19 39
|
submateq |
|- ( ph -> ( I ( subMat1 ` M ) J ) = ( I ( subMat1 ` E ) J ) ) |