| Step | Hyp | Ref | Expression | 
						
							| 1 |  | submateq.a |  |-  A = ( ( 1 ... N ) Mat R ) | 
						
							| 2 |  | submateq.b |  |-  B = ( Base ` A ) | 
						
							| 3 |  | submateq.n |  |-  ( ph -> N e. NN ) | 
						
							| 4 |  | submateq.i |  |-  ( ph -> I e. ( 1 ... N ) ) | 
						
							| 5 |  | submateq.j |  |-  ( ph -> J e. ( 1 ... N ) ) | 
						
							| 6 |  | submateq.e |  |-  ( ph -> E e. B ) | 
						
							| 7 |  | submateq.f |  |-  ( ph -> F e. B ) | 
						
							| 8 |  | submateq.1 |  |-  ( ( ph /\ i e. ( ( 1 ... N ) \ { I } ) /\ j e. ( ( 1 ... N ) \ { J } ) ) -> ( i E j ) = ( i F j ) ) | 
						
							| 9 |  | simprl |  |-  ( ( ph /\ ( x e. ( 1 ... ( N - 1 ) ) /\ y e. ( 1 ... ( N - 1 ) ) ) ) -> x e. ( 1 ... ( N - 1 ) ) ) | 
						
							| 10 | 3 | ad2antrr |  |-  ( ( ( ph /\ x e. ( 1 ... ( N - 1 ) ) ) /\ I <_ x ) -> N e. NN ) | 
						
							| 11 | 4 | ad2antrr |  |-  ( ( ( ph /\ x e. ( 1 ... ( N - 1 ) ) ) /\ I <_ x ) -> I e. ( 1 ... N ) ) | 
						
							| 12 |  | simplr |  |-  ( ( ( ph /\ x e. ( 1 ... ( N - 1 ) ) ) /\ I <_ x ) -> x e. ( 1 ... ( N - 1 ) ) ) | 
						
							| 13 |  | simpr |  |-  ( ( ( ph /\ x e. ( 1 ... ( N - 1 ) ) ) /\ I <_ x ) -> I <_ x ) | 
						
							| 14 | 10 11 12 13 | submateqlem1 |  |-  ( ( ( ph /\ x e. ( 1 ... ( N - 1 ) ) ) /\ I <_ x ) -> ( x e. ( I ... N ) /\ ( x + 1 ) e. ( ( 1 ... N ) \ { I } ) ) ) | 
						
							| 15 | 14 | simprd |  |-  ( ( ( ph /\ x e. ( 1 ... ( N - 1 ) ) ) /\ I <_ x ) -> ( x + 1 ) e. ( ( 1 ... N ) \ { I } ) ) | 
						
							| 16 | 9 15 | syldanl |  |-  ( ( ( ph /\ ( x e. ( 1 ... ( N - 1 ) ) /\ y e. ( 1 ... ( N - 1 ) ) ) ) /\ I <_ x ) -> ( x + 1 ) e. ( ( 1 ... N ) \ { I } ) ) | 
						
							| 17 | 16 | adantr |  |-  ( ( ( ( ph /\ ( x e. ( 1 ... ( N - 1 ) ) /\ y e. ( 1 ... ( N - 1 ) ) ) ) /\ I <_ x ) /\ J <_ y ) -> ( x + 1 ) e. ( ( 1 ... N ) \ { I } ) ) | 
						
							| 18 |  | simprr |  |-  ( ( ph /\ ( x e. ( 1 ... ( N - 1 ) ) /\ y e. ( 1 ... ( N - 1 ) ) ) ) -> y e. ( 1 ... ( N - 1 ) ) ) | 
						
							| 19 | 3 | ad2antrr |  |-  ( ( ( ph /\ y e. ( 1 ... ( N - 1 ) ) ) /\ J <_ y ) -> N e. NN ) | 
						
							| 20 | 5 | ad2antrr |  |-  ( ( ( ph /\ y e. ( 1 ... ( N - 1 ) ) ) /\ J <_ y ) -> J e. ( 1 ... N ) ) | 
						
							| 21 |  | simplr |  |-  ( ( ( ph /\ y e. ( 1 ... ( N - 1 ) ) ) /\ J <_ y ) -> y e. ( 1 ... ( N - 1 ) ) ) | 
						
							| 22 |  | simpr |  |-  ( ( ( ph /\ y e. ( 1 ... ( N - 1 ) ) ) /\ J <_ y ) -> J <_ y ) | 
						
							| 23 | 19 20 21 22 | submateqlem1 |  |-  ( ( ( ph /\ y e. ( 1 ... ( N - 1 ) ) ) /\ J <_ y ) -> ( y e. ( J ... N ) /\ ( y + 1 ) e. ( ( 1 ... N ) \ { J } ) ) ) | 
						
							| 24 | 23 | simprd |  |-  ( ( ( ph /\ y e. ( 1 ... ( N - 1 ) ) ) /\ J <_ y ) -> ( y + 1 ) e. ( ( 1 ... N ) \ { J } ) ) | 
						
							| 25 | 18 24 | syldanl |  |-  ( ( ( ph /\ ( x e. ( 1 ... ( N - 1 ) ) /\ y e. ( 1 ... ( N - 1 ) ) ) ) /\ J <_ y ) -> ( y + 1 ) e. ( ( 1 ... N ) \ { J } ) ) | 
						
							| 26 | 25 | adantlr |  |-  ( ( ( ( ph /\ ( x e. ( 1 ... ( N - 1 ) ) /\ y e. ( 1 ... ( N - 1 ) ) ) ) /\ I <_ x ) /\ J <_ y ) -> ( y + 1 ) e. ( ( 1 ... N ) \ { J } ) ) | 
						
							| 27 | 17 26 | jca |  |-  ( ( ( ( ph /\ ( x e. ( 1 ... ( N - 1 ) ) /\ y e. ( 1 ... ( N - 1 ) ) ) ) /\ I <_ x ) /\ J <_ y ) -> ( ( x + 1 ) e. ( ( 1 ... N ) \ { I } ) /\ ( y + 1 ) e. ( ( 1 ... N ) \ { J } ) ) ) | 
						
							| 28 |  | ovexd |  |-  ( ph -> ( x + 1 ) e. _V ) | 
						
							| 29 |  | ovexd |  |-  ( ph -> ( y + 1 ) e. _V ) | 
						
							| 30 |  | simpl |  |-  ( ( i = ( x + 1 ) /\ j = ( y + 1 ) ) -> i = ( x + 1 ) ) | 
						
							| 31 | 30 | eleq1d |  |-  ( ( i = ( x + 1 ) /\ j = ( y + 1 ) ) -> ( i e. ( ( 1 ... N ) \ { I } ) <-> ( x + 1 ) e. ( ( 1 ... N ) \ { I } ) ) ) | 
						
							| 32 |  | simpr |  |-  ( ( i = ( x + 1 ) /\ j = ( y + 1 ) ) -> j = ( y + 1 ) ) | 
						
							| 33 | 32 | eleq1d |  |-  ( ( i = ( x + 1 ) /\ j = ( y + 1 ) ) -> ( j e. ( ( 1 ... N ) \ { J } ) <-> ( y + 1 ) e. ( ( 1 ... N ) \ { J } ) ) ) | 
						
							| 34 | 31 33 | anbi12d |  |-  ( ( i = ( x + 1 ) /\ j = ( y + 1 ) ) -> ( ( i e. ( ( 1 ... N ) \ { I } ) /\ j e. ( ( 1 ... N ) \ { J } ) ) <-> ( ( x + 1 ) e. ( ( 1 ... N ) \ { I } ) /\ ( y + 1 ) e. ( ( 1 ... N ) \ { J } ) ) ) ) | 
						
							| 35 |  | oveq12 |  |-  ( ( i = ( x + 1 ) /\ j = ( y + 1 ) ) -> ( i E j ) = ( ( x + 1 ) E ( y + 1 ) ) ) | 
						
							| 36 |  | oveq12 |  |-  ( ( i = ( x + 1 ) /\ j = ( y + 1 ) ) -> ( i F j ) = ( ( x + 1 ) F ( y + 1 ) ) ) | 
						
							| 37 | 35 36 | eqeq12d |  |-  ( ( i = ( x + 1 ) /\ j = ( y + 1 ) ) -> ( ( i E j ) = ( i F j ) <-> ( ( x + 1 ) E ( y + 1 ) ) = ( ( x + 1 ) F ( y + 1 ) ) ) ) | 
						
							| 38 | 34 37 | imbi12d |  |-  ( ( i = ( x + 1 ) /\ j = ( y + 1 ) ) -> ( ( ( i e. ( ( 1 ... N ) \ { I } ) /\ j e. ( ( 1 ... N ) \ { J } ) ) -> ( i E j ) = ( i F j ) ) <-> ( ( ( x + 1 ) e. ( ( 1 ... N ) \ { I } ) /\ ( y + 1 ) e. ( ( 1 ... N ) \ { J } ) ) -> ( ( x + 1 ) E ( y + 1 ) ) = ( ( x + 1 ) F ( y + 1 ) ) ) ) ) | 
						
							| 39 | 8 | 3expib |  |-  ( ph -> ( ( i e. ( ( 1 ... N ) \ { I } ) /\ j e. ( ( 1 ... N ) \ { J } ) ) -> ( i E j ) = ( i F j ) ) ) | 
						
							| 40 | 28 29 38 39 | vtocl2d |  |-  ( ph -> ( ( ( x + 1 ) e. ( ( 1 ... N ) \ { I } ) /\ ( y + 1 ) e. ( ( 1 ... N ) \ { J } ) ) -> ( ( x + 1 ) E ( y + 1 ) ) = ( ( x + 1 ) F ( y + 1 ) ) ) ) | 
						
							| 41 | 40 | ad3antrrr |  |-  ( ( ( ( ph /\ ( x e. ( 1 ... ( N - 1 ) ) /\ y e. ( 1 ... ( N - 1 ) ) ) ) /\ I <_ x ) /\ J <_ y ) -> ( ( ( x + 1 ) e. ( ( 1 ... N ) \ { I } ) /\ ( y + 1 ) e. ( ( 1 ... N ) \ { J } ) ) -> ( ( x + 1 ) E ( y + 1 ) ) = ( ( x + 1 ) F ( y + 1 ) ) ) ) | 
						
							| 42 | 27 41 | mpd |  |-  ( ( ( ( ph /\ ( x e. ( 1 ... ( N - 1 ) ) /\ y e. ( 1 ... ( N - 1 ) ) ) ) /\ I <_ x ) /\ J <_ y ) -> ( ( x + 1 ) E ( y + 1 ) ) = ( ( x + 1 ) F ( y + 1 ) ) ) | 
						
							| 43 |  | eqid |  |-  ( I ( subMat1 ` E ) J ) = ( I ( subMat1 ` E ) J ) | 
						
							| 44 | 3 | ad3antrrr |  |-  ( ( ( ( ph /\ ( x e. ( 1 ... ( N - 1 ) ) /\ y e. ( 1 ... ( N - 1 ) ) ) ) /\ I <_ x ) /\ J <_ y ) -> N e. NN ) | 
						
							| 45 | 4 | ad3antrrr |  |-  ( ( ( ( ph /\ ( x e. ( 1 ... ( N - 1 ) ) /\ y e. ( 1 ... ( N - 1 ) ) ) ) /\ I <_ x ) /\ J <_ y ) -> I e. ( 1 ... N ) ) | 
						
							| 46 | 5 | ad3antrrr |  |-  ( ( ( ( ph /\ ( x e. ( 1 ... ( N - 1 ) ) /\ y e. ( 1 ... ( N - 1 ) ) ) ) /\ I <_ x ) /\ J <_ y ) -> J e. ( 1 ... N ) ) | 
						
							| 47 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 48 | 1 47 2 | matbas2i |  |-  ( E e. B -> E e. ( ( Base ` R ) ^m ( ( 1 ... N ) X. ( 1 ... N ) ) ) ) | 
						
							| 49 | 6 48 | syl |  |-  ( ph -> E e. ( ( Base ` R ) ^m ( ( 1 ... N ) X. ( 1 ... N ) ) ) ) | 
						
							| 50 | 49 | ad3antrrr |  |-  ( ( ( ( ph /\ ( x e. ( 1 ... ( N - 1 ) ) /\ y e. ( 1 ... ( N - 1 ) ) ) ) /\ I <_ x ) /\ J <_ y ) -> E e. ( ( Base ` R ) ^m ( ( 1 ... N ) X. ( 1 ... N ) ) ) ) | 
						
							| 51 | 14 | simpld |  |-  ( ( ( ph /\ x e. ( 1 ... ( N - 1 ) ) ) /\ I <_ x ) -> x e. ( I ... N ) ) | 
						
							| 52 | 9 51 | syldanl |  |-  ( ( ( ph /\ ( x e. ( 1 ... ( N - 1 ) ) /\ y e. ( 1 ... ( N - 1 ) ) ) ) /\ I <_ x ) -> x e. ( I ... N ) ) | 
						
							| 53 | 52 | adantr |  |-  ( ( ( ( ph /\ ( x e. ( 1 ... ( N - 1 ) ) /\ y e. ( 1 ... ( N - 1 ) ) ) ) /\ I <_ x ) /\ J <_ y ) -> x e. ( I ... N ) ) | 
						
							| 54 | 23 | simpld |  |-  ( ( ( ph /\ y e. ( 1 ... ( N - 1 ) ) ) /\ J <_ y ) -> y e. ( J ... N ) ) | 
						
							| 55 | 18 54 | syldanl |  |-  ( ( ( ph /\ ( x e. ( 1 ... ( N - 1 ) ) /\ y e. ( 1 ... ( N - 1 ) ) ) ) /\ J <_ y ) -> y e. ( J ... N ) ) | 
						
							| 56 | 55 | adantlr |  |-  ( ( ( ( ph /\ ( x e. ( 1 ... ( N - 1 ) ) /\ y e. ( 1 ... ( N - 1 ) ) ) ) /\ I <_ x ) /\ J <_ y ) -> y e. ( J ... N ) ) | 
						
							| 57 | 43 44 44 45 46 50 53 56 | smatbr |  |-  ( ( ( ( ph /\ ( x e. ( 1 ... ( N - 1 ) ) /\ y e. ( 1 ... ( N - 1 ) ) ) ) /\ I <_ x ) /\ J <_ y ) -> ( x ( I ( subMat1 ` E ) J ) y ) = ( ( x + 1 ) E ( y + 1 ) ) ) | 
						
							| 58 |  | eqid |  |-  ( I ( subMat1 ` F ) J ) = ( I ( subMat1 ` F ) J ) | 
						
							| 59 | 1 47 2 | matbas2i |  |-  ( F e. B -> F e. ( ( Base ` R ) ^m ( ( 1 ... N ) X. ( 1 ... N ) ) ) ) | 
						
							| 60 | 7 59 | syl |  |-  ( ph -> F e. ( ( Base ` R ) ^m ( ( 1 ... N ) X. ( 1 ... N ) ) ) ) | 
						
							| 61 | 60 | ad3antrrr |  |-  ( ( ( ( ph /\ ( x e. ( 1 ... ( N - 1 ) ) /\ y e. ( 1 ... ( N - 1 ) ) ) ) /\ I <_ x ) /\ J <_ y ) -> F e. ( ( Base ` R ) ^m ( ( 1 ... N ) X. ( 1 ... N ) ) ) ) | 
						
							| 62 | 58 44 44 45 46 61 53 56 | smatbr |  |-  ( ( ( ( ph /\ ( x e. ( 1 ... ( N - 1 ) ) /\ y e. ( 1 ... ( N - 1 ) ) ) ) /\ I <_ x ) /\ J <_ y ) -> ( x ( I ( subMat1 ` F ) J ) y ) = ( ( x + 1 ) F ( y + 1 ) ) ) | 
						
							| 63 | 42 57 62 | 3eqtr4d |  |-  ( ( ( ( ph /\ ( x e. ( 1 ... ( N - 1 ) ) /\ y e. ( 1 ... ( N - 1 ) ) ) ) /\ I <_ x ) /\ J <_ y ) -> ( x ( I ( subMat1 ` E ) J ) y ) = ( x ( I ( subMat1 ` F ) J ) y ) ) | 
						
							| 64 | 16 | adantr |  |-  ( ( ( ( ph /\ ( x e. ( 1 ... ( N - 1 ) ) /\ y e. ( 1 ... ( N - 1 ) ) ) ) /\ I <_ x ) /\ y < J ) -> ( x + 1 ) e. ( ( 1 ... N ) \ { I } ) ) | 
						
							| 65 | 3 | ad2antrr |  |-  ( ( ( ph /\ y e. ( 1 ... ( N - 1 ) ) ) /\ y < J ) -> N e. NN ) | 
						
							| 66 | 5 | ad2antrr |  |-  ( ( ( ph /\ y e. ( 1 ... ( N - 1 ) ) ) /\ y < J ) -> J e. ( 1 ... N ) ) | 
						
							| 67 |  | simplr |  |-  ( ( ( ph /\ y e. ( 1 ... ( N - 1 ) ) ) /\ y < J ) -> y e. ( 1 ... ( N - 1 ) ) ) | 
						
							| 68 |  | simpr |  |-  ( ( ( ph /\ y e. ( 1 ... ( N - 1 ) ) ) /\ y < J ) -> y < J ) | 
						
							| 69 | 65 66 67 68 | submateqlem2 |  |-  ( ( ( ph /\ y e. ( 1 ... ( N - 1 ) ) ) /\ y < J ) -> ( y e. ( 1 ..^ J ) /\ y e. ( ( 1 ... N ) \ { J } ) ) ) | 
						
							| 70 | 69 | simprd |  |-  ( ( ( ph /\ y e. ( 1 ... ( N - 1 ) ) ) /\ y < J ) -> y e. ( ( 1 ... N ) \ { J } ) ) | 
						
							| 71 | 18 70 | syldanl |  |-  ( ( ( ph /\ ( x e. ( 1 ... ( N - 1 ) ) /\ y e. ( 1 ... ( N - 1 ) ) ) ) /\ y < J ) -> y e. ( ( 1 ... N ) \ { J } ) ) | 
						
							| 72 | 71 | adantlr |  |-  ( ( ( ( ph /\ ( x e. ( 1 ... ( N - 1 ) ) /\ y e. ( 1 ... ( N - 1 ) ) ) ) /\ I <_ x ) /\ y < J ) -> y e. ( ( 1 ... N ) \ { J } ) ) | 
						
							| 73 | 64 72 | jca |  |-  ( ( ( ( ph /\ ( x e. ( 1 ... ( N - 1 ) ) /\ y e. ( 1 ... ( N - 1 ) ) ) ) /\ I <_ x ) /\ y < J ) -> ( ( x + 1 ) e. ( ( 1 ... N ) \ { I } ) /\ y e. ( ( 1 ... N ) \ { J } ) ) ) | 
						
							| 74 |  | vex |  |-  y e. _V | 
						
							| 75 | 74 | a1i |  |-  ( ph -> y e. _V ) | 
						
							| 76 |  | simpl |  |-  ( ( i = ( x + 1 ) /\ j = y ) -> i = ( x + 1 ) ) | 
						
							| 77 | 76 | eleq1d |  |-  ( ( i = ( x + 1 ) /\ j = y ) -> ( i e. ( ( 1 ... N ) \ { I } ) <-> ( x + 1 ) e. ( ( 1 ... N ) \ { I } ) ) ) | 
						
							| 78 |  | simpr |  |-  ( ( i = ( x + 1 ) /\ j = y ) -> j = y ) | 
						
							| 79 |  | eqidd |  |-  ( ( i = ( x + 1 ) /\ j = y ) -> ( ( 1 ... N ) \ { J } ) = ( ( 1 ... N ) \ { J } ) ) | 
						
							| 80 | 78 79 | eleq12d |  |-  ( ( i = ( x + 1 ) /\ j = y ) -> ( j e. ( ( 1 ... N ) \ { J } ) <-> y e. ( ( 1 ... N ) \ { J } ) ) ) | 
						
							| 81 | 77 80 | anbi12d |  |-  ( ( i = ( x + 1 ) /\ j = y ) -> ( ( i e. ( ( 1 ... N ) \ { I } ) /\ j e. ( ( 1 ... N ) \ { J } ) ) <-> ( ( x + 1 ) e. ( ( 1 ... N ) \ { I } ) /\ y e. ( ( 1 ... N ) \ { J } ) ) ) ) | 
						
							| 82 |  | oveq12 |  |-  ( ( i = ( x + 1 ) /\ j = y ) -> ( i E j ) = ( ( x + 1 ) E y ) ) | 
						
							| 83 |  | oveq12 |  |-  ( ( i = ( x + 1 ) /\ j = y ) -> ( i F j ) = ( ( x + 1 ) F y ) ) | 
						
							| 84 | 82 83 | eqeq12d |  |-  ( ( i = ( x + 1 ) /\ j = y ) -> ( ( i E j ) = ( i F j ) <-> ( ( x + 1 ) E y ) = ( ( x + 1 ) F y ) ) ) | 
						
							| 85 | 81 84 | imbi12d |  |-  ( ( i = ( x + 1 ) /\ j = y ) -> ( ( ( i e. ( ( 1 ... N ) \ { I } ) /\ j e. ( ( 1 ... N ) \ { J } ) ) -> ( i E j ) = ( i F j ) ) <-> ( ( ( x + 1 ) e. ( ( 1 ... N ) \ { I } ) /\ y e. ( ( 1 ... N ) \ { J } ) ) -> ( ( x + 1 ) E y ) = ( ( x + 1 ) F y ) ) ) ) | 
						
							| 86 | 28 75 85 39 | vtocl2d |  |-  ( ph -> ( ( ( x + 1 ) e. ( ( 1 ... N ) \ { I } ) /\ y e. ( ( 1 ... N ) \ { J } ) ) -> ( ( x + 1 ) E y ) = ( ( x + 1 ) F y ) ) ) | 
						
							| 87 | 86 | ad3antrrr |  |-  ( ( ( ( ph /\ ( x e. ( 1 ... ( N - 1 ) ) /\ y e. ( 1 ... ( N - 1 ) ) ) ) /\ I <_ x ) /\ y < J ) -> ( ( ( x + 1 ) e. ( ( 1 ... N ) \ { I } ) /\ y e. ( ( 1 ... N ) \ { J } ) ) -> ( ( x + 1 ) E y ) = ( ( x + 1 ) F y ) ) ) | 
						
							| 88 | 73 87 | mpd |  |-  ( ( ( ( ph /\ ( x e. ( 1 ... ( N - 1 ) ) /\ y e. ( 1 ... ( N - 1 ) ) ) ) /\ I <_ x ) /\ y < J ) -> ( ( x + 1 ) E y ) = ( ( x + 1 ) F y ) ) | 
						
							| 89 | 3 | ad3antrrr |  |-  ( ( ( ( ph /\ ( x e. ( 1 ... ( N - 1 ) ) /\ y e. ( 1 ... ( N - 1 ) ) ) ) /\ I <_ x ) /\ y < J ) -> N e. NN ) | 
						
							| 90 | 4 | ad3antrrr |  |-  ( ( ( ( ph /\ ( x e. ( 1 ... ( N - 1 ) ) /\ y e. ( 1 ... ( N - 1 ) ) ) ) /\ I <_ x ) /\ y < J ) -> I e. ( 1 ... N ) ) | 
						
							| 91 | 5 | ad3antrrr |  |-  ( ( ( ( ph /\ ( x e. ( 1 ... ( N - 1 ) ) /\ y e. ( 1 ... ( N - 1 ) ) ) ) /\ I <_ x ) /\ y < J ) -> J e. ( 1 ... N ) ) | 
						
							| 92 | 49 | ad3antrrr |  |-  ( ( ( ( ph /\ ( x e. ( 1 ... ( N - 1 ) ) /\ y e. ( 1 ... ( N - 1 ) ) ) ) /\ I <_ x ) /\ y < J ) -> E e. ( ( Base ` R ) ^m ( ( 1 ... N ) X. ( 1 ... N ) ) ) ) | 
						
							| 93 | 52 | adantr |  |-  ( ( ( ( ph /\ ( x e. ( 1 ... ( N - 1 ) ) /\ y e. ( 1 ... ( N - 1 ) ) ) ) /\ I <_ x ) /\ y < J ) -> x e. ( I ... N ) ) | 
						
							| 94 | 69 | simpld |  |-  ( ( ( ph /\ y e. ( 1 ... ( N - 1 ) ) ) /\ y < J ) -> y e. ( 1 ..^ J ) ) | 
						
							| 95 | 18 94 | syldanl |  |-  ( ( ( ph /\ ( x e. ( 1 ... ( N - 1 ) ) /\ y e. ( 1 ... ( N - 1 ) ) ) ) /\ y < J ) -> y e. ( 1 ..^ J ) ) | 
						
							| 96 | 95 | adantlr |  |-  ( ( ( ( ph /\ ( x e. ( 1 ... ( N - 1 ) ) /\ y e. ( 1 ... ( N - 1 ) ) ) ) /\ I <_ x ) /\ y < J ) -> y e. ( 1 ..^ J ) ) | 
						
							| 97 | 43 89 89 90 91 92 93 96 | smattr |  |-  ( ( ( ( ph /\ ( x e. ( 1 ... ( N - 1 ) ) /\ y e. ( 1 ... ( N - 1 ) ) ) ) /\ I <_ x ) /\ y < J ) -> ( x ( I ( subMat1 ` E ) J ) y ) = ( ( x + 1 ) E y ) ) | 
						
							| 98 | 60 | ad3antrrr |  |-  ( ( ( ( ph /\ ( x e. ( 1 ... ( N - 1 ) ) /\ y e. ( 1 ... ( N - 1 ) ) ) ) /\ I <_ x ) /\ y < J ) -> F e. ( ( Base ` R ) ^m ( ( 1 ... N ) X. ( 1 ... N ) ) ) ) | 
						
							| 99 | 58 89 89 90 91 98 93 96 | smattr |  |-  ( ( ( ( ph /\ ( x e. ( 1 ... ( N - 1 ) ) /\ y e. ( 1 ... ( N - 1 ) ) ) ) /\ I <_ x ) /\ y < J ) -> ( x ( I ( subMat1 ` F ) J ) y ) = ( ( x + 1 ) F y ) ) | 
						
							| 100 | 88 97 99 | 3eqtr4d |  |-  ( ( ( ( ph /\ ( x e. ( 1 ... ( N - 1 ) ) /\ y e. ( 1 ... ( N - 1 ) ) ) ) /\ I <_ x ) /\ y < J ) -> ( x ( I ( subMat1 ` E ) J ) y ) = ( x ( I ( subMat1 ` F ) J ) y ) ) | 
						
							| 101 |  | fz1ssnn |  |-  ( 1 ... N ) C_ NN | 
						
							| 102 | 101 5 | sselid |  |-  ( ph -> J e. NN ) | 
						
							| 103 | 102 | nnred |  |-  ( ph -> J e. RR ) | 
						
							| 104 | 103 | adantr |  |-  ( ( ph /\ ( x e. ( 1 ... ( N - 1 ) ) /\ y e. ( 1 ... ( N - 1 ) ) ) ) -> J e. RR ) | 
						
							| 105 |  | fz1ssnn |  |-  ( 1 ... ( N - 1 ) ) C_ NN | 
						
							| 106 | 105 18 | sselid |  |-  ( ( ph /\ ( x e. ( 1 ... ( N - 1 ) ) /\ y e. ( 1 ... ( N - 1 ) ) ) ) -> y e. NN ) | 
						
							| 107 | 106 | nnred |  |-  ( ( ph /\ ( x e. ( 1 ... ( N - 1 ) ) /\ y e. ( 1 ... ( N - 1 ) ) ) ) -> y e. RR ) | 
						
							| 108 |  | lelttric |  |-  ( ( J e. RR /\ y e. RR ) -> ( J <_ y \/ y < J ) ) | 
						
							| 109 | 104 107 108 | syl2anc |  |-  ( ( ph /\ ( x e. ( 1 ... ( N - 1 ) ) /\ y e. ( 1 ... ( N - 1 ) ) ) ) -> ( J <_ y \/ y < J ) ) | 
						
							| 110 | 109 | adantr |  |-  ( ( ( ph /\ ( x e. ( 1 ... ( N - 1 ) ) /\ y e. ( 1 ... ( N - 1 ) ) ) ) /\ I <_ x ) -> ( J <_ y \/ y < J ) ) | 
						
							| 111 | 63 100 110 | mpjaodan |  |-  ( ( ( ph /\ ( x e. ( 1 ... ( N - 1 ) ) /\ y e. ( 1 ... ( N - 1 ) ) ) ) /\ I <_ x ) -> ( x ( I ( subMat1 ` E ) J ) y ) = ( x ( I ( subMat1 ` F ) J ) y ) ) | 
						
							| 112 | 3 | ad2antrr |  |-  ( ( ( ph /\ x e. ( 1 ... ( N - 1 ) ) ) /\ x < I ) -> N e. NN ) | 
						
							| 113 | 4 | ad2antrr |  |-  ( ( ( ph /\ x e. ( 1 ... ( N - 1 ) ) ) /\ x < I ) -> I e. ( 1 ... N ) ) | 
						
							| 114 |  | simplr |  |-  ( ( ( ph /\ x e. ( 1 ... ( N - 1 ) ) ) /\ x < I ) -> x e. ( 1 ... ( N - 1 ) ) ) | 
						
							| 115 |  | simpr |  |-  ( ( ( ph /\ x e. ( 1 ... ( N - 1 ) ) ) /\ x < I ) -> x < I ) | 
						
							| 116 | 112 113 114 115 | submateqlem2 |  |-  ( ( ( ph /\ x e. ( 1 ... ( N - 1 ) ) ) /\ x < I ) -> ( x e. ( 1 ..^ I ) /\ x e. ( ( 1 ... N ) \ { I } ) ) ) | 
						
							| 117 | 116 | simprd |  |-  ( ( ( ph /\ x e. ( 1 ... ( N - 1 ) ) ) /\ x < I ) -> x e. ( ( 1 ... N ) \ { I } ) ) | 
						
							| 118 | 9 117 | syldanl |  |-  ( ( ( ph /\ ( x e. ( 1 ... ( N - 1 ) ) /\ y e. ( 1 ... ( N - 1 ) ) ) ) /\ x < I ) -> x e. ( ( 1 ... N ) \ { I } ) ) | 
						
							| 119 | 118 | adantr |  |-  ( ( ( ( ph /\ ( x e. ( 1 ... ( N - 1 ) ) /\ y e. ( 1 ... ( N - 1 ) ) ) ) /\ x < I ) /\ J <_ y ) -> x e. ( ( 1 ... N ) \ { I } ) ) | 
						
							| 120 | 25 | adantlr |  |-  ( ( ( ( ph /\ ( x e. ( 1 ... ( N - 1 ) ) /\ y e. ( 1 ... ( N - 1 ) ) ) ) /\ x < I ) /\ J <_ y ) -> ( y + 1 ) e. ( ( 1 ... N ) \ { J } ) ) | 
						
							| 121 | 119 120 | jca |  |-  ( ( ( ( ph /\ ( x e. ( 1 ... ( N - 1 ) ) /\ y e. ( 1 ... ( N - 1 ) ) ) ) /\ x < I ) /\ J <_ y ) -> ( x e. ( ( 1 ... N ) \ { I } ) /\ ( y + 1 ) e. ( ( 1 ... N ) \ { J } ) ) ) | 
						
							| 122 |  | vex |  |-  x e. _V | 
						
							| 123 | 122 | a1i |  |-  ( ph -> x e. _V ) | 
						
							| 124 |  | simpl |  |-  ( ( i = x /\ j = ( y + 1 ) ) -> i = x ) | 
						
							| 125 | 124 | eleq1d |  |-  ( ( i = x /\ j = ( y + 1 ) ) -> ( i e. ( ( 1 ... N ) \ { I } ) <-> x e. ( ( 1 ... N ) \ { I } ) ) ) | 
						
							| 126 |  | simpr |  |-  ( ( i = x /\ j = ( y + 1 ) ) -> j = ( y + 1 ) ) | 
						
							| 127 | 126 | eleq1d |  |-  ( ( i = x /\ j = ( y + 1 ) ) -> ( j e. ( ( 1 ... N ) \ { J } ) <-> ( y + 1 ) e. ( ( 1 ... N ) \ { J } ) ) ) | 
						
							| 128 | 125 127 | anbi12d |  |-  ( ( i = x /\ j = ( y + 1 ) ) -> ( ( i e. ( ( 1 ... N ) \ { I } ) /\ j e. ( ( 1 ... N ) \ { J } ) ) <-> ( x e. ( ( 1 ... N ) \ { I } ) /\ ( y + 1 ) e. ( ( 1 ... N ) \ { J } ) ) ) ) | 
						
							| 129 |  | oveq12 |  |-  ( ( i = x /\ j = ( y + 1 ) ) -> ( i E j ) = ( x E ( y + 1 ) ) ) | 
						
							| 130 |  | oveq12 |  |-  ( ( i = x /\ j = ( y + 1 ) ) -> ( i F j ) = ( x F ( y + 1 ) ) ) | 
						
							| 131 | 129 130 | eqeq12d |  |-  ( ( i = x /\ j = ( y + 1 ) ) -> ( ( i E j ) = ( i F j ) <-> ( x E ( y + 1 ) ) = ( x F ( y + 1 ) ) ) ) | 
						
							| 132 | 128 131 | imbi12d |  |-  ( ( i = x /\ j = ( y + 1 ) ) -> ( ( ( i e. ( ( 1 ... N ) \ { I } ) /\ j e. ( ( 1 ... N ) \ { J } ) ) -> ( i E j ) = ( i F j ) ) <-> ( ( x e. ( ( 1 ... N ) \ { I } ) /\ ( y + 1 ) e. ( ( 1 ... N ) \ { J } ) ) -> ( x E ( y + 1 ) ) = ( x F ( y + 1 ) ) ) ) ) | 
						
							| 133 | 123 29 132 39 | vtocl2d |  |-  ( ph -> ( ( x e. ( ( 1 ... N ) \ { I } ) /\ ( y + 1 ) e. ( ( 1 ... N ) \ { J } ) ) -> ( x E ( y + 1 ) ) = ( x F ( y + 1 ) ) ) ) | 
						
							| 134 | 133 | ad3antrrr |  |-  ( ( ( ( ph /\ ( x e. ( 1 ... ( N - 1 ) ) /\ y e. ( 1 ... ( N - 1 ) ) ) ) /\ x < I ) /\ J <_ y ) -> ( ( x e. ( ( 1 ... N ) \ { I } ) /\ ( y + 1 ) e. ( ( 1 ... N ) \ { J } ) ) -> ( x E ( y + 1 ) ) = ( x F ( y + 1 ) ) ) ) | 
						
							| 135 | 121 134 | mpd |  |-  ( ( ( ( ph /\ ( x e. ( 1 ... ( N - 1 ) ) /\ y e. ( 1 ... ( N - 1 ) ) ) ) /\ x < I ) /\ J <_ y ) -> ( x E ( y + 1 ) ) = ( x F ( y + 1 ) ) ) | 
						
							| 136 | 3 | ad3antrrr |  |-  ( ( ( ( ph /\ ( x e. ( 1 ... ( N - 1 ) ) /\ y e. ( 1 ... ( N - 1 ) ) ) ) /\ x < I ) /\ J <_ y ) -> N e. NN ) | 
						
							| 137 | 4 | ad3antrrr |  |-  ( ( ( ( ph /\ ( x e. ( 1 ... ( N - 1 ) ) /\ y e. ( 1 ... ( N - 1 ) ) ) ) /\ x < I ) /\ J <_ y ) -> I e. ( 1 ... N ) ) | 
						
							| 138 | 5 | ad3antrrr |  |-  ( ( ( ( ph /\ ( x e. ( 1 ... ( N - 1 ) ) /\ y e. ( 1 ... ( N - 1 ) ) ) ) /\ x < I ) /\ J <_ y ) -> J e. ( 1 ... N ) ) | 
						
							| 139 | 49 | ad3antrrr |  |-  ( ( ( ( ph /\ ( x e. ( 1 ... ( N - 1 ) ) /\ y e. ( 1 ... ( N - 1 ) ) ) ) /\ x < I ) /\ J <_ y ) -> E e. ( ( Base ` R ) ^m ( ( 1 ... N ) X. ( 1 ... N ) ) ) ) | 
						
							| 140 | 116 | simpld |  |-  ( ( ( ph /\ x e. ( 1 ... ( N - 1 ) ) ) /\ x < I ) -> x e. ( 1 ..^ I ) ) | 
						
							| 141 | 9 140 | syldanl |  |-  ( ( ( ph /\ ( x e. ( 1 ... ( N - 1 ) ) /\ y e. ( 1 ... ( N - 1 ) ) ) ) /\ x < I ) -> x e. ( 1 ..^ I ) ) | 
						
							| 142 | 141 | adantr |  |-  ( ( ( ( ph /\ ( x e. ( 1 ... ( N - 1 ) ) /\ y e. ( 1 ... ( N - 1 ) ) ) ) /\ x < I ) /\ J <_ y ) -> x e. ( 1 ..^ I ) ) | 
						
							| 143 | 55 | adantlr |  |-  ( ( ( ( ph /\ ( x e. ( 1 ... ( N - 1 ) ) /\ y e. ( 1 ... ( N - 1 ) ) ) ) /\ x < I ) /\ J <_ y ) -> y e. ( J ... N ) ) | 
						
							| 144 | 43 136 136 137 138 139 142 143 | smatbl |  |-  ( ( ( ( ph /\ ( x e. ( 1 ... ( N - 1 ) ) /\ y e. ( 1 ... ( N - 1 ) ) ) ) /\ x < I ) /\ J <_ y ) -> ( x ( I ( subMat1 ` E ) J ) y ) = ( x E ( y + 1 ) ) ) | 
						
							| 145 | 60 | ad3antrrr |  |-  ( ( ( ( ph /\ ( x e. ( 1 ... ( N - 1 ) ) /\ y e. ( 1 ... ( N - 1 ) ) ) ) /\ x < I ) /\ J <_ y ) -> F e. ( ( Base ` R ) ^m ( ( 1 ... N ) X. ( 1 ... N ) ) ) ) | 
						
							| 146 | 58 136 136 137 138 145 142 143 | smatbl |  |-  ( ( ( ( ph /\ ( x e. ( 1 ... ( N - 1 ) ) /\ y e. ( 1 ... ( N - 1 ) ) ) ) /\ x < I ) /\ J <_ y ) -> ( x ( I ( subMat1 ` F ) J ) y ) = ( x F ( y + 1 ) ) ) | 
						
							| 147 | 135 144 146 | 3eqtr4d |  |-  ( ( ( ( ph /\ ( x e. ( 1 ... ( N - 1 ) ) /\ y e. ( 1 ... ( N - 1 ) ) ) ) /\ x < I ) /\ J <_ y ) -> ( x ( I ( subMat1 ` E ) J ) y ) = ( x ( I ( subMat1 ` F ) J ) y ) ) | 
						
							| 148 | 118 | adantr |  |-  ( ( ( ( ph /\ ( x e. ( 1 ... ( N - 1 ) ) /\ y e. ( 1 ... ( N - 1 ) ) ) ) /\ x < I ) /\ y < J ) -> x e. ( ( 1 ... N ) \ { I } ) ) | 
						
							| 149 | 71 | adantlr |  |-  ( ( ( ( ph /\ ( x e. ( 1 ... ( N - 1 ) ) /\ y e. ( 1 ... ( N - 1 ) ) ) ) /\ x < I ) /\ y < J ) -> y e. ( ( 1 ... N ) \ { J } ) ) | 
						
							| 150 | 148 149 | jca |  |-  ( ( ( ( ph /\ ( x e. ( 1 ... ( N - 1 ) ) /\ y e. ( 1 ... ( N - 1 ) ) ) ) /\ x < I ) /\ y < J ) -> ( x e. ( ( 1 ... N ) \ { I } ) /\ y e. ( ( 1 ... N ) \ { J } ) ) ) | 
						
							| 151 |  | simpl |  |-  ( ( i = x /\ j = y ) -> i = x ) | 
						
							| 152 | 151 | eleq1d |  |-  ( ( i = x /\ j = y ) -> ( i e. ( ( 1 ... N ) \ { I } ) <-> x e. ( ( 1 ... N ) \ { I } ) ) ) | 
						
							| 153 |  | simpr |  |-  ( ( i = x /\ j = y ) -> j = y ) | 
						
							| 154 | 153 | eleq1d |  |-  ( ( i = x /\ j = y ) -> ( j e. ( ( 1 ... N ) \ { J } ) <-> y e. ( ( 1 ... N ) \ { J } ) ) ) | 
						
							| 155 | 152 154 | anbi12d |  |-  ( ( i = x /\ j = y ) -> ( ( i e. ( ( 1 ... N ) \ { I } ) /\ j e. ( ( 1 ... N ) \ { J } ) ) <-> ( x e. ( ( 1 ... N ) \ { I } ) /\ y e. ( ( 1 ... N ) \ { J } ) ) ) ) | 
						
							| 156 |  | oveq12 |  |-  ( ( i = x /\ j = y ) -> ( i E j ) = ( x E y ) ) | 
						
							| 157 |  | oveq12 |  |-  ( ( i = x /\ j = y ) -> ( i F j ) = ( x F y ) ) | 
						
							| 158 | 156 157 | eqeq12d |  |-  ( ( i = x /\ j = y ) -> ( ( i E j ) = ( i F j ) <-> ( x E y ) = ( x F y ) ) ) | 
						
							| 159 | 155 158 | imbi12d |  |-  ( ( i = x /\ j = y ) -> ( ( ( i e. ( ( 1 ... N ) \ { I } ) /\ j e. ( ( 1 ... N ) \ { J } ) ) -> ( i E j ) = ( i F j ) ) <-> ( ( x e. ( ( 1 ... N ) \ { I } ) /\ y e. ( ( 1 ... N ) \ { J } ) ) -> ( x E y ) = ( x F y ) ) ) ) | 
						
							| 160 | 123 75 159 39 | vtocl2d |  |-  ( ph -> ( ( x e. ( ( 1 ... N ) \ { I } ) /\ y e. ( ( 1 ... N ) \ { J } ) ) -> ( x E y ) = ( x F y ) ) ) | 
						
							| 161 | 160 | ad3antrrr |  |-  ( ( ( ( ph /\ ( x e. ( 1 ... ( N - 1 ) ) /\ y e. ( 1 ... ( N - 1 ) ) ) ) /\ x < I ) /\ y < J ) -> ( ( x e. ( ( 1 ... N ) \ { I } ) /\ y e. ( ( 1 ... N ) \ { J } ) ) -> ( x E y ) = ( x F y ) ) ) | 
						
							| 162 | 150 161 | mpd |  |-  ( ( ( ( ph /\ ( x e. ( 1 ... ( N - 1 ) ) /\ y e. ( 1 ... ( N - 1 ) ) ) ) /\ x < I ) /\ y < J ) -> ( x E y ) = ( x F y ) ) | 
						
							| 163 | 3 | ad3antrrr |  |-  ( ( ( ( ph /\ ( x e. ( 1 ... ( N - 1 ) ) /\ y e. ( 1 ... ( N - 1 ) ) ) ) /\ x < I ) /\ y < J ) -> N e. NN ) | 
						
							| 164 | 4 | ad3antrrr |  |-  ( ( ( ( ph /\ ( x e. ( 1 ... ( N - 1 ) ) /\ y e. ( 1 ... ( N - 1 ) ) ) ) /\ x < I ) /\ y < J ) -> I e. ( 1 ... N ) ) | 
						
							| 165 | 5 | ad3antrrr |  |-  ( ( ( ( ph /\ ( x e. ( 1 ... ( N - 1 ) ) /\ y e. ( 1 ... ( N - 1 ) ) ) ) /\ x < I ) /\ y < J ) -> J e. ( 1 ... N ) ) | 
						
							| 166 | 49 | ad3antrrr |  |-  ( ( ( ( ph /\ ( x e. ( 1 ... ( N - 1 ) ) /\ y e. ( 1 ... ( N - 1 ) ) ) ) /\ x < I ) /\ y < J ) -> E e. ( ( Base ` R ) ^m ( ( 1 ... N ) X. ( 1 ... N ) ) ) ) | 
						
							| 167 | 141 | adantr |  |-  ( ( ( ( ph /\ ( x e. ( 1 ... ( N - 1 ) ) /\ y e. ( 1 ... ( N - 1 ) ) ) ) /\ x < I ) /\ y < J ) -> x e. ( 1 ..^ I ) ) | 
						
							| 168 | 95 | adantlr |  |-  ( ( ( ( ph /\ ( x e. ( 1 ... ( N - 1 ) ) /\ y e. ( 1 ... ( N - 1 ) ) ) ) /\ x < I ) /\ y < J ) -> y e. ( 1 ..^ J ) ) | 
						
							| 169 | 43 163 163 164 165 166 167 168 | smattl |  |-  ( ( ( ( ph /\ ( x e. ( 1 ... ( N - 1 ) ) /\ y e. ( 1 ... ( N - 1 ) ) ) ) /\ x < I ) /\ y < J ) -> ( x ( I ( subMat1 ` E ) J ) y ) = ( x E y ) ) | 
						
							| 170 | 60 | ad3antrrr |  |-  ( ( ( ( ph /\ ( x e. ( 1 ... ( N - 1 ) ) /\ y e. ( 1 ... ( N - 1 ) ) ) ) /\ x < I ) /\ y < J ) -> F e. ( ( Base ` R ) ^m ( ( 1 ... N ) X. ( 1 ... N ) ) ) ) | 
						
							| 171 | 58 163 163 164 165 170 167 168 | smattl |  |-  ( ( ( ( ph /\ ( x e. ( 1 ... ( N - 1 ) ) /\ y e. ( 1 ... ( N - 1 ) ) ) ) /\ x < I ) /\ y < J ) -> ( x ( I ( subMat1 ` F ) J ) y ) = ( x F y ) ) | 
						
							| 172 | 162 169 171 | 3eqtr4d |  |-  ( ( ( ( ph /\ ( x e. ( 1 ... ( N - 1 ) ) /\ y e. ( 1 ... ( N - 1 ) ) ) ) /\ x < I ) /\ y < J ) -> ( x ( I ( subMat1 ` E ) J ) y ) = ( x ( I ( subMat1 ` F ) J ) y ) ) | 
						
							| 173 | 109 | adantr |  |-  ( ( ( ph /\ ( x e. ( 1 ... ( N - 1 ) ) /\ y e. ( 1 ... ( N - 1 ) ) ) ) /\ x < I ) -> ( J <_ y \/ y < J ) ) | 
						
							| 174 | 147 172 173 | mpjaodan |  |-  ( ( ( ph /\ ( x e. ( 1 ... ( N - 1 ) ) /\ y e. ( 1 ... ( N - 1 ) ) ) ) /\ x < I ) -> ( x ( I ( subMat1 ` E ) J ) y ) = ( x ( I ( subMat1 ` F ) J ) y ) ) | 
						
							| 175 | 101 4 | sselid |  |-  ( ph -> I e. NN ) | 
						
							| 176 | 175 | nnred |  |-  ( ph -> I e. RR ) | 
						
							| 177 | 176 | adantr |  |-  ( ( ph /\ ( x e. ( 1 ... ( N - 1 ) ) /\ y e. ( 1 ... ( N - 1 ) ) ) ) -> I e. RR ) | 
						
							| 178 | 105 9 | sselid |  |-  ( ( ph /\ ( x e. ( 1 ... ( N - 1 ) ) /\ y e. ( 1 ... ( N - 1 ) ) ) ) -> x e. NN ) | 
						
							| 179 | 178 | nnred |  |-  ( ( ph /\ ( x e. ( 1 ... ( N - 1 ) ) /\ y e. ( 1 ... ( N - 1 ) ) ) ) -> x e. RR ) | 
						
							| 180 |  | lelttric |  |-  ( ( I e. RR /\ x e. RR ) -> ( I <_ x \/ x < I ) ) | 
						
							| 181 | 177 179 180 | syl2anc |  |-  ( ( ph /\ ( x e. ( 1 ... ( N - 1 ) ) /\ y e. ( 1 ... ( N - 1 ) ) ) ) -> ( I <_ x \/ x < I ) ) | 
						
							| 182 | 111 174 181 | mpjaodan |  |-  ( ( ph /\ ( x e. ( 1 ... ( N - 1 ) ) /\ y e. ( 1 ... ( N - 1 ) ) ) ) -> ( x ( I ( subMat1 ` E ) J ) y ) = ( x ( I ( subMat1 ` F ) J ) y ) ) | 
						
							| 183 | 182 | ralrimivva |  |-  ( ph -> A. x e. ( 1 ... ( N - 1 ) ) A. y e. ( 1 ... ( N - 1 ) ) ( x ( I ( subMat1 ` E ) J ) y ) = ( x ( I ( subMat1 ` F ) J ) y ) ) | 
						
							| 184 |  | eqid |  |-  ( Base ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) = ( Base ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) | 
						
							| 185 | 1 2 184 43 3 4 5 6 | smatcl |  |-  ( ph -> ( I ( subMat1 ` E ) J ) e. ( Base ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) ) | 
						
							| 186 | 1 2 184 58 3 4 5 7 | smatcl |  |-  ( ph -> ( I ( subMat1 ` F ) J ) e. ( Base ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) ) | 
						
							| 187 |  | eqid |  |-  ( ( 1 ... ( N - 1 ) ) Mat R ) = ( ( 1 ... ( N - 1 ) ) Mat R ) | 
						
							| 188 | 187 184 | eqmat |  |-  ( ( ( I ( subMat1 ` E ) J ) e. ( Base ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) /\ ( I ( subMat1 ` F ) J ) e. ( Base ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) ) -> ( ( I ( subMat1 ` E ) J ) = ( I ( subMat1 ` F ) J ) <-> A. x e. ( 1 ... ( N - 1 ) ) A. y e. ( 1 ... ( N - 1 ) ) ( x ( I ( subMat1 ` E ) J ) y ) = ( x ( I ( subMat1 ` F ) J ) y ) ) ) | 
						
							| 189 | 185 186 188 | syl2anc |  |-  ( ph -> ( ( I ( subMat1 ` E ) J ) = ( I ( subMat1 ` F ) J ) <-> A. x e. ( 1 ... ( N - 1 ) ) A. y e. ( 1 ... ( N - 1 ) ) ( x ( I ( subMat1 ` E ) J ) y ) = ( x ( I ( subMat1 ` F ) J ) y ) ) ) | 
						
							| 190 | 183 189 | mpbird |  |-  ( ph -> ( I ( subMat1 ` E ) J ) = ( I ( subMat1 ` F ) J ) ) |