| Step |
Hyp |
Ref |
Expression |
| 1 |
|
submateqlem2.n |
|- ( ph -> N e. NN ) |
| 2 |
|
submateqlem2.k |
|- ( ph -> K e. ( 1 ... N ) ) |
| 3 |
|
submateqlem2.m |
|- ( ph -> M e. ( 1 ... ( N - 1 ) ) ) |
| 4 |
|
submateqlem2.1 |
|- ( ph -> M < K ) |
| 5 |
|
fz1ssnn |
|- ( 1 ... ( N - 1 ) ) C_ NN |
| 6 |
5 3
|
sselid |
|- ( ph -> M e. NN ) |
| 7 |
6
|
nnge1d |
|- ( ph -> 1 <_ M ) |
| 8 |
7 4
|
jca |
|- ( ph -> ( 1 <_ M /\ M < K ) ) |
| 9 |
3
|
elfzelzd |
|- ( ph -> M e. ZZ ) |
| 10 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
| 11 |
2
|
elfzelzd |
|- ( ph -> K e. ZZ ) |
| 12 |
|
elfzo |
|- ( ( M e. ZZ /\ 1 e. ZZ /\ K e. ZZ ) -> ( M e. ( 1 ..^ K ) <-> ( 1 <_ M /\ M < K ) ) ) |
| 13 |
9 10 11 12
|
syl3anc |
|- ( ph -> ( M e. ( 1 ..^ K ) <-> ( 1 <_ M /\ M < K ) ) ) |
| 14 |
8 13
|
mpbird |
|- ( ph -> M e. ( 1 ..^ K ) ) |
| 15 |
3
|
orcd |
|- ( ph -> ( M e. ( 1 ... ( N - 1 ) ) \/ M = N ) ) |
| 16 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 17 |
1 16
|
eleqtrdi |
|- ( ph -> N e. ( ZZ>= ` 1 ) ) |
| 18 |
|
fzm1 |
|- ( N e. ( ZZ>= ` 1 ) -> ( M e. ( 1 ... N ) <-> ( M e. ( 1 ... ( N - 1 ) ) \/ M = N ) ) ) |
| 19 |
17 18
|
syl |
|- ( ph -> ( M e. ( 1 ... N ) <-> ( M e. ( 1 ... ( N - 1 ) ) \/ M = N ) ) ) |
| 20 |
15 19
|
mpbird |
|- ( ph -> M e. ( 1 ... N ) ) |
| 21 |
6
|
nnred |
|- ( ph -> M e. RR ) |
| 22 |
21 4
|
ltned |
|- ( ph -> M =/= K ) |
| 23 |
|
nelsn |
|- ( M =/= K -> -. M e. { K } ) |
| 24 |
22 23
|
syl |
|- ( ph -> -. M e. { K } ) |
| 25 |
20 24
|
eldifd |
|- ( ph -> M e. ( ( 1 ... N ) \ { K } ) ) |
| 26 |
14 25
|
jca |
|- ( ph -> ( M e. ( 1 ..^ K ) /\ M e. ( ( 1 ... N ) \ { K } ) ) ) |