| Step | Hyp | Ref | Expression | 
						
							| 1 |  | submateqlem2.n |  |-  ( ph -> N e. NN ) | 
						
							| 2 |  | submateqlem2.k |  |-  ( ph -> K e. ( 1 ... N ) ) | 
						
							| 3 |  | submateqlem2.m |  |-  ( ph -> M e. ( 1 ... ( N - 1 ) ) ) | 
						
							| 4 |  | submateqlem2.1 |  |-  ( ph -> M < K ) | 
						
							| 5 |  | fz1ssnn |  |-  ( 1 ... ( N - 1 ) ) C_ NN | 
						
							| 6 | 5 3 | sselid |  |-  ( ph -> M e. NN ) | 
						
							| 7 | 6 | nnge1d |  |-  ( ph -> 1 <_ M ) | 
						
							| 8 | 7 4 | jca |  |-  ( ph -> ( 1 <_ M /\ M < K ) ) | 
						
							| 9 | 3 | elfzelzd |  |-  ( ph -> M e. ZZ ) | 
						
							| 10 |  | 1zzd |  |-  ( ph -> 1 e. ZZ ) | 
						
							| 11 | 2 | elfzelzd |  |-  ( ph -> K e. ZZ ) | 
						
							| 12 |  | elfzo |  |-  ( ( M e. ZZ /\ 1 e. ZZ /\ K e. ZZ ) -> ( M e. ( 1 ..^ K ) <-> ( 1 <_ M /\ M < K ) ) ) | 
						
							| 13 | 9 10 11 12 | syl3anc |  |-  ( ph -> ( M e. ( 1 ..^ K ) <-> ( 1 <_ M /\ M < K ) ) ) | 
						
							| 14 | 8 13 | mpbird |  |-  ( ph -> M e. ( 1 ..^ K ) ) | 
						
							| 15 | 3 | orcd |  |-  ( ph -> ( M e. ( 1 ... ( N - 1 ) ) \/ M = N ) ) | 
						
							| 16 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 17 | 1 16 | eleqtrdi |  |-  ( ph -> N e. ( ZZ>= ` 1 ) ) | 
						
							| 18 |  | fzm1 |  |-  ( N e. ( ZZ>= ` 1 ) -> ( M e. ( 1 ... N ) <-> ( M e. ( 1 ... ( N - 1 ) ) \/ M = N ) ) ) | 
						
							| 19 | 17 18 | syl |  |-  ( ph -> ( M e. ( 1 ... N ) <-> ( M e. ( 1 ... ( N - 1 ) ) \/ M = N ) ) ) | 
						
							| 20 | 15 19 | mpbird |  |-  ( ph -> M e. ( 1 ... N ) ) | 
						
							| 21 | 6 | nnred |  |-  ( ph -> M e. RR ) | 
						
							| 22 | 21 4 | ltned |  |-  ( ph -> M =/= K ) | 
						
							| 23 |  | nelsn |  |-  ( M =/= K -> -. M e. { K } ) | 
						
							| 24 | 22 23 | syl |  |-  ( ph -> -. M e. { K } ) | 
						
							| 25 | 20 24 | eldifd |  |-  ( ph -> M e. ( ( 1 ... N ) \ { K } ) ) | 
						
							| 26 | 14 25 | jca |  |-  ( ph -> ( M e. ( 1 ..^ K ) /\ M e. ( ( 1 ... N ) \ { K } ) ) ) |