Metamath Proof Explorer


Theorem submateqlem2

Description: Lemma for submateq . (Contributed by Thierry Arnoux, 26-Aug-2020)

Ref Expression
Hypotheses submateqlem2.n
|- ( ph -> N e. NN )
submateqlem2.k
|- ( ph -> K e. ( 1 ... N ) )
submateqlem2.m
|- ( ph -> M e. ( 1 ... ( N - 1 ) ) )
submateqlem2.1
|- ( ph -> M < K )
Assertion submateqlem2
|- ( ph -> ( M e. ( 1 ..^ K ) /\ M e. ( ( 1 ... N ) \ { K } ) ) )

Proof

Step Hyp Ref Expression
1 submateqlem2.n
 |-  ( ph -> N e. NN )
2 submateqlem2.k
 |-  ( ph -> K e. ( 1 ... N ) )
3 submateqlem2.m
 |-  ( ph -> M e. ( 1 ... ( N - 1 ) ) )
4 submateqlem2.1
 |-  ( ph -> M < K )
5 fz1ssnn
 |-  ( 1 ... ( N - 1 ) ) C_ NN
6 5 3 sselid
 |-  ( ph -> M e. NN )
7 6 nnge1d
 |-  ( ph -> 1 <_ M )
8 7 4 jca
 |-  ( ph -> ( 1 <_ M /\ M < K ) )
9 3 elfzelzd
 |-  ( ph -> M e. ZZ )
10 1zzd
 |-  ( ph -> 1 e. ZZ )
11 2 elfzelzd
 |-  ( ph -> K e. ZZ )
12 elfzo
 |-  ( ( M e. ZZ /\ 1 e. ZZ /\ K e. ZZ ) -> ( M e. ( 1 ..^ K ) <-> ( 1 <_ M /\ M < K ) ) )
13 9 10 11 12 syl3anc
 |-  ( ph -> ( M e. ( 1 ..^ K ) <-> ( 1 <_ M /\ M < K ) ) )
14 8 13 mpbird
 |-  ( ph -> M e. ( 1 ..^ K ) )
15 3 orcd
 |-  ( ph -> ( M e. ( 1 ... ( N - 1 ) ) \/ M = N ) )
16 nnuz
 |-  NN = ( ZZ>= ` 1 )
17 1 16 eleqtrdi
 |-  ( ph -> N e. ( ZZ>= ` 1 ) )
18 fzm1
 |-  ( N e. ( ZZ>= ` 1 ) -> ( M e. ( 1 ... N ) <-> ( M e. ( 1 ... ( N - 1 ) ) \/ M = N ) ) )
19 17 18 syl
 |-  ( ph -> ( M e. ( 1 ... N ) <-> ( M e. ( 1 ... ( N - 1 ) ) \/ M = N ) ) )
20 15 19 mpbird
 |-  ( ph -> M e. ( 1 ... N ) )
21 6 nnred
 |-  ( ph -> M e. RR )
22 21 4 ltned
 |-  ( ph -> M =/= K )
23 nelsn
 |-  ( M =/= K -> -. M e. { K } )
24 22 23 syl
 |-  ( ph -> -. M e. { K } )
25 20 24 eldifd
 |-  ( ph -> M e. ( ( 1 ... N ) \ { K } ) )
26 14 25 jca
 |-  ( ph -> ( M e. ( 1 ..^ K ) /\ M e. ( ( 1 ... N ) \ { K } ) ) )