| Step | Hyp | Ref | Expression | 
						
							| 1 |  | submateqlem2.n | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 2 |  | submateqlem2.k | ⊢ ( 𝜑  →  𝐾  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 3 |  | submateqlem2.m | ⊢ ( 𝜑  →  𝑀  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) | 
						
							| 4 |  | submateqlem2.1 | ⊢ ( 𝜑  →  𝑀  <  𝐾 ) | 
						
							| 5 |  | fz1ssnn | ⊢ ( 1 ... ( 𝑁  −  1 ) )  ⊆  ℕ | 
						
							| 6 | 5 3 | sselid | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 7 | 6 | nnge1d | ⊢ ( 𝜑  →  1  ≤  𝑀 ) | 
						
							| 8 | 7 4 | jca | ⊢ ( 𝜑  →  ( 1  ≤  𝑀  ∧  𝑀  <  𝐾 ) ) | 
						
							| 9 | 3 | elfzelzd | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 10 |  | 1zzd | ⊢ ( 𝜑  →  1  ∈  ℤ ) | 
						
							| 11 | 2 | elfzelzd | ⊢ ( 𝜑  →  𝐾  ∈  ℤ ) | 
						
							| 12 |  | elfzo | ⊢ ( ( 𝑀  ∈  ℤ  ∧  1  ∈  ℤ  ∧  𝐾  ∈  ℤ )  →  ( 𝑀  ∈  ( 1 ..^ 𝐾 )  ↔  ( 1  ≤  𝑀  ∧  𝑀  <  𝐾 ) ) ) | 
						
							| 13 | 9 10 11 12 | syl3anc | ⊢ ( 𝜑  →  ( 𝑀  ∈  ( 1 ..^ 𝐾 )  ↔  ( 1  ≤  𝑀  ∧  𝑀  <  𝐾 ) ) ) | 
						
							| 14 | 8 13 | mpbird | ⊢ ( 𝜑  →  𝑀  ∈  ( 1 ..^ 𝐾 ) ) | 
						
							| 15 | 3 | orcd | ⊢ ( 𝜑  →  ( 𝑀  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∨  𝑀  =  𝑁 ) ) | 
						
							| 16 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 17 | 1 16 | eleqtrdi | ⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 18 |  | fzm1 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 1 )  →  ( 𝑀  ∈  ( 1 ... 𝑁 )  ↔  ( 𝑀  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∨  𝑀  =  𝑁 ) ) ) | 
						
							| 19 | 17 18 | syl | ⊢ ( 𝜑  →  ( 𝑀  ∈  ( 1 ... 𝑁 )  ↔  ( 𝑀  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∨  𝑀  =  𝑁 ) ) ) | 
						
							| 20 | 15 19 | mpbird | ⊢ ( 𝜑  →  𝑀  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 21 | 6 | nnred | ⊢ ( 𝜑  →  𝑀  ∈  ℝ ) | 
						
							| 22 | 21 4 | ltned | ⊢ ( 𝜑  →  𝑀  ≠  𝐾 ) | 
						
							| 23 |  | nelsn | ⊢ ( 𝑀  ≠  𝐾  →  ¬  𝑀  ∈  { 𝐾 } ) | 
						
							| 24 | 22 23 | syl | ⊢ ( 𝜑  →  ¬  𝑀  ∈  { 𝐾 } ) | 
						
							| 25 | 20 24 | eldifd | ⊢ ( 𝜑  →  𝑀  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐾 } ) ) | 
						
							| 26 | 14 25 | jca | ⊢ ( 𝜑  →  ( 𝑀  ∈  ( 1 ..^ 𝐾 )  ∧  𝑀  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐾 } ) ) ) |