| Step |
Hyp |
Ref |
Expression |
| 1 |
|
submateqlem2.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 2 |
|
submateqlem2.k |
⊢ ( 𝜑 → 𝐾 ∈ ( 1 ... 𝑁 ) ) |
| 3 |
|
submateqlem2.m |
⊢ ( 𝜑 → 𝑀 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) |
| 4 |
|
submateqlem2.1 |
⊢ ( 𝜑 → 𝑀 < 𝐾 ) |
| 5 |
|
fz1ssnn |
⊢ ( 1 ... ( 𝑁 − 1 ) ) ⊆ ℕ |
| 6 |
5 3
|
sselid |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
| 7 |
6
|
nnge1d |
⊢ ( 𝜑 → 1 ≤ 𝑀 ) |
| 8 |
7 4
|
jca |
⊢ ( 𝜑 → ( 1 ≤ 𝑀 ∧ 𝑀 < 𝐾 ) ) |
| 9 |
3
|
elfzelzd |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 10 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
| 11 |
2
|
elfzelzd |
⊢ ( 𝜑 → 𝐾 ∈ ℤ ) |
| 12 |
|
elfzo |
⊢ ( ( 𝑀 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝐾 ∈ ℤ ) → ( 𝑀 ∈ ( 1 ..^ 𝐾 ) ↔ ( 1 ≤ 𝑀 ∧ 𝑀 < 𝐾 ) ) ) |
| 13 |
9 10 11 12
|
syl3anc |
⊢ ( 𝜑 → ( 𝑀 ∈ ( 1 ..^ 𝐾 ) ↔ ( 1 ≤ 𝑀 ∧ 𝑀 < 𝐾 ) ) ) |
| 14 |
8 13
|
mpbird |
⊢ ( 𝜑 → 𝑀 ∈ ( 1 ..^ 𝐾 ) ) |
| 15 |
3
|
orcd |
⊢ ( 𝜑 → ( 𝑀 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∨ 𝑀 = 𝑁 ) ) |
| 16 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 17 |
1 16
|
eleqtrdi |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 1 ) ) |
| 18 |
|
fzm1 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 1 ) → ( 𝑀 ∈ ( 1 ... 𝑁 ) ↔ ( 𝑀 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∨ 𝑀 = 𝑁 ) ) ) |
| 19 |
17 18
|
syl |
⊢ ( 𝜑 → ( 𝑀 ∈ ( 1 ... 𝑁 ) ↔ ( 𝑀 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∨ 𝑀 = 𝑁 ) ) ) |
| 20 |
15 19
|
mpbird |
⊢ ( 𝜑 → 𝑀 ∈ ( 1 ... 𝑁 ) ) |
| 21 |
6
|
nnred |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
| 22 |
21 4
|
ltned |
⊢ ( 𝜑 → 𝑀 ≠ 𝐾 ) |
| 23 |
|
nelsn |
⊢ ( 𝑀 ≠ 𝐾 → ¬ 𝑀 ∈ { 𝐾 } ) |
| 24 |
22 23
|
syl |
⊢ ( 𝜑 → ¬ 𝑀 ∈ { 𝐾 } ) |
| 25 |
20 24
|
eldifd |
⊢ ( 𝜑 → 𝑀 ∈ ( ( 1 ... 𝑁 ) ∖ { 𝐾 } ) ) |
| 26 |
14 25
|
jca |
⊢ ( 𝜑 → ( 𝑀 ∈ ( 1 ..^ 𝐾 ) ∧ 𝑀 ∈ ( ( 1 ... 𝑁 ) ∖ { 𝐾 } ) ) ) |