Metamath Proof Explorer


Theorem submateqlem2

Description: Lemma for submateq . (Contributed by Thierry Arnoux, 26-Aug-2020)

Ref Expression
Hypotheses submateqlem2.n φ N
submateqlem2.k φ K 1 N
submateqlem2.m φ M 1 N 1
submateqlem2.1 φ M < K
Assertion submateqlem2 φ M 1 ..^ K M 1 N K

Proof

Step Hyp Ref Expression
1 submateqlem2.n φ N
2 submateqlem2.k φ K 1 N
3 submateqlem2.m φ M 1 N 1
4 submateqlem2.1 φ M < K
5 fz1ssnn 1 N 1
6 5 3 sselid φ M
7 6 nnge1d φ 1 M
8 7 4 jca φ 1 M M < K
9 3 elfzelzd φ M
10 1zzd φ 1
11 2 elfzelzd φ K
12 elfzo M 1 K M 1 ..^ K 1 M M < K
13 9 10 11 12 syl3anc φ M 1 ..^ K 1 M M < K
14 8 13 mpbird φ M 1 ..^ K
15 3 orcd φ M 1 N 1 M = N
16 nnuz = 1
17 1 16 eleqtrdi φ N 1
18 fzm1 N 1 M 1 N M 1 N 1 M = N
19 17 18 syl φ M 1 N M 1 N 1 M = N
20 15 19 mpbird φ M 1 N
21 6 nnred φ M
22 21 4 ltned φ M K
23 nelsn M K ¬ M K
24 22 23 syl φ ¬ M K
25 20 24 eldifd φ M 1 N K
26 14 25 jca φ M 1 ..^ K M 1 N K