| Step | Hyp | Ref | Expression | 
						
							| 1 |  | submateq.a | ⊢ 𝐴  =  ( ( 1 ... 𝑁 )  Mat  𝑅 ) | 
						
							| 2 |  | submateq.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 3 |  | submateq.n | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 4 |  | submateq.i | ⊢ ( 𝜑  →  𝐼  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 5 |  | submateq.j | ⊢ ( 𝜑  →  𝐽  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 6 |  | submateq.e | ⊢ ( 𝜑  →  𝐸  ∈  𝐵 ) | 
						
							| 7 |  | submateq.f | ⊢ ( 𝜑  →  𝐹  ∈  𝐵 ) | 
						
							| 8 |  | submateq.1 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐼 } )  ∧  𝑗  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐽 } ) )  →  ( 𝑖 𝐸 𝑗 )  =  ( 𝑖 𝐹 𝑗 ) ) | 
						
							| 9 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  →  𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) | 
						
							| 10 | 3 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  ∧  𝐼  ≤  𝑥 )  →  𝑁  ∈  ℕ ) | 
						
							| 11 | 4 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  ∧  𝐼  ≤  𝑥 )  →  𝐼  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 12 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  ∧  𝐼  ≤  𝑥 )  →  𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) | 
						
							| 13 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  ∧  𝐼  ≤  𝑥 )  →  𝐼  ≤  𝑥 ) | 
						
							| 14 | 10 11 12 13 | submateqlem1 | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  ∧  𝐼  ≤  𝑥 )  →  ( 𝑥  ∈  ( 𝐼 ... 𝑁 )  ∧  ( 𝑥  +  1 )  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐼 } ) ) ) | 
						
							| 15 | 14 | simprd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  ∧  𝐼  ≤  𝑥 )  →  ( 𝑥  +  1 )  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐼 } ) ) | 
						
							| 16 | 9 15 | syldanl | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  ∧  𝐼  ≤  𝑥 )  →  ( 𝑥  +  1 )  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐼 } ) ) | 
						
							| 17 | 16 | adantr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  ∧  𝐼  ≤  𝑥 )  ∧  𝐽  ≤  𝑦 )  →  ( 𝑥  +  1 )  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐼 } ) ) | 
						
							| 18 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  →  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) | 
						
							| 19 | 3 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  ∧  𝐽  ≤  𝑦 )  →  𝑁  ∈  ℕ ) | 
						
							| 20 | 5 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  ∧  𝐽  ≤  𝑦 )  →  𝐽  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 21 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  ∧  𝐽  ≤  𝑦 )  →  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) | 
						
							| 22 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  ∧  𝐽  ≤  𝑦 )  →  𝐽  ≤  𝑦 ) | 
						
							| 23 | 19 20 21 22 | submateqlem1 | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  ∧  𝐽  ≤  𝑦 )  →  ( 𝑦  ∈  ( 𝐽 ... 𝑁 )  ∧  ( 𝑦  +  1 )  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐽 } ) ) ) | 
						
							| 24 | 23 | simprd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  ∧  𝐽  ≤  𝑦 )  →  ( 𝑦  +  1 )  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐽 } ) ) | 
						
							| 25 | 18 24 | syldanl | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  ∧  𝐽  ≤  𝑦 )  →  ( 𝑦  +  1 )  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐽 } ) ) | 
						
							| 26 | 25 | adantlr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  ∧  𝐼  ≤  𝑥 )  ∧  𝐽  ≤  𝑦 )  →  ( 𝑦  +  1 )  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐽 } ) ) | 
						
							| 27 | 17 26 | jca | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  ∧  𝐼  ≤  𝑥 )  ∧  𝐽  ≤  𝑦 )  →  ( ( 𝑥  +  1 )  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐼 } )  ∧  ( 𝑦  +  1 )  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐽 } ) ) ) | 
						
							| 28 |  | ovexd | ⊢ ( 𝜑  →  ( 𝑥  +  1 )  ∈  V ) | 
						
							| 29 |  | ovexd | ⊢ ( 𝜑  →  ( 𝑦  +  1 )  ∈  V ) | 
						
							| 30 |  | simpl | ⊢ ( ( 𝑖  =  ( 𝑥  +  1 )  ∧  𝑗  =  ( 𝑦  +  1 ) )  →  𝑖  =  ( 𝑥  +  1 ) ) | 
						
							| 31 | 30 | eleq1d | ⊢ ( ( 𝑖  =  ( 𝑥  +  1 )  ∧  𝑗  =  ( 𝑦  +  1 ) )  →  ( 𝑖  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐼 } )  ↔  ( 𝑥  +  1 )  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐼 } ) ) ) | 
						
							| 32 |  | simpr | ⊢ ( ( 𝑖  =  ( 𝑥  +  1 )  ∧  𝑗  =  ( 𝑦  +  1 ) )  →  𝑗  =  ( 𝑦  +  1 ) ) | 
						
							| 33 | 32 | eleq1d | ⊢ ( ( 𝑖  =  ( 𝑥  +  1 )  ∧  𝑗  =  ( 𝑦  +  1 ) )  →  ( 𝑗  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐽 } )  ↔  ( 𝑦  +  1 )  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐽 } ) ) ) | 
						
							| 34 | 31 33 | anbi12d | ⊢ ( ( 𝑖  =  ( 𝑥  +  1 )  ∧  𝑗  =  ( 𝑦  +  1 ) )  →  ( ( 𝑖  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐼 } )  ∧  𝑗  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐽 } ) )  ↔  ( ( 𝑥  +  1 )  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐼 } )  ∧  ( 𝑦  +  1 )  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐽 } ) ) ) ) | 
						
							| 35 |  | oveq12 | ⊢ ( ( 𝑖  =  ( 𝑥  +  1 )  ∧  𝑗  =  ( 𝑦  +  1 ) )  →  ( 𝑖 𝐸 𝑗 )  =  ( ( 𝑥  +  1 ) 𝐸 ( 𝑦  +  1 ) ) ) | 
						
							| 36 |  | oveq12 | ⊢ ( ( 𝑖  =  ( 𝑥  +  1 )  ∧  𝑗  =  ( 𝑦  +  1 ) )  →  ( 𝑖 𝐹 𝑗 )  =  ( ( 𝑥  +  1 ) 𝐹 ( 𝑦  +  1 ) ) ) | 
						
							| 37 | 35 36 | eqeq12d | ⊢ ( ( 𝑖  =  ( 𝑥  +  1 )  ∧  𝑗  =  ( 𝑦  +  1 ) )  →  ( ( 𝑖 𝐸 𝑗 )  =  ( 𝑖 𝐹 𝑗 )  ↔  ( ( 𝑥  +  1 ) 𝐸 ( 𝑦  +  1 ) )  =  ( ( 𝑥  +  1 ) 𝐹 ( 𝑦  +  1 ) ) ) ) | 
						
							| 38 | 34 37 | imbi12d | ⊢ ( ( 𝑖  =  ( 𝑥  +  1 )  ∧  𝑗  =  ( 𝑦  +  1 ) )  →  ( ( ( 𝑖  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐼 } )  ∧  𝑗  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐽 } ) )  →  ( 𝑖 𝐸 𝑗 )  =  ( 𝑖 𝐹 𝑗 ) )  ↔  ( ( ( 𝑥  +  1 )  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐼 } )  ∧  ( 𝑦  +  1 )  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐽 } ) )  →  ( ( 𝑥  +  1 ) 𝐸 ( 𝑦  +  1 ) )  =  ( ( 𝑥  +  1 ) 𝐹 ( 𝑦  +  1 ) ) ) ) ) | 
						
							| 39 | 8 | 3expib | ⊢ ( 𝜑  →  ( ( 𝑖  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐼 } )  ∧  𝑗  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐽 } ) )  →  ( 𝑖 𝐸 𝑗 )  =  ( 𝑖 𝐹 𝑗 ) ) ) | 
						
							| 40 | 28 29 38 39 | vtocl2d | ⊢ ( 𝜑  →  ( ( ( 𝑥  +  1 )  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐼 } )  ∧  ( 𝑦  +  1 )  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐽 } ) )  →  ( ( 𝑥  +  1 ) 𝐸 ( 𝑦  +  1 ) )  =  ( ( 𝑥  +  1 ) 𝐹 ( 𝑦  +  1 ) ) ) ) | 
						
							| 41 | 40 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  ∧  𝐼  ≤  𝑥 )  ∧  𝐽  ≤  𝑦 )  →  ( ( ( 𝑥  +  1 )  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐼 } )  ∧  ( 𝑦  +  1 )  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐽 } ) )  →  ( ( 𝑥  +  1 ) 𝐸 ( 𝑦  +  1 ) )  =  ( ( 𝑥  +  1 ) 𝐹 ( 𝑦  +  1 ) ) ) ) | 
						
							| 42 | 27 41 | mpd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  ∧  𝐼  ≤  𝑥 )  ∧  𝐽  ≤  𝑦 )  →  ( ( 𝑥  +  1 ) 𝐸 ( 𝑦  +  1 ) )  =  ( ( 𝑥  +  1 ) 𝐹 ( 𝑦  +  1 ) ) ) | 
						
							| 43 |  | eqid | ⊢ ( 𝐼 ( subMat1 ‘ 𝐸 ) 𝐽 )  =  ( 𝐼 ( subMat1 ‘ 𝐸 ) 𝐽 ) | 
						
							| 44 | 3 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  ∧  𝐼  ≤  𝑥 )  ∧  𝐽  ≤  𝑦 )  →  𝑁  ∈  ℕ ) | 
						
							| 45 | 4 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  ∧  𝐼  ≤  𝑥 )  ∧  𝐽  ≤  𝑦 )  →  𝐼  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 46 | 5 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  ∧  𝐼  ≤  𝑥 )  ∧  𝐽  ≤  𝑦 )  →  𝐽  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 47 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 48 | 1 47 2 | matbas2i | ⊢ ( 𝐸  ∈  𝐵  →  𝐸  ∈  ( ( Base ‘ 𝑅 )  ↑m  ( ( 1 ... 𝑁 )  ×  ( 1 ... 𝑁 ) ) ) ) | 
						
							| 49 | 6 48 | syl | ⊢ ( 𝜑  →  𝐸  ∈  ( ( Base ‘ 𝑅 )  ↑m  ( ( 1 ... 𝑁 )  ×  ( 1 ... 𝑁 ) ) ) ) | 
						
							| 50 | 49 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  ∧  𝐼  ≤  𝑥 )  ∧  𝐽  ≤  𝑦 )  →  𝐸  ∈  ( ( Base ‘ 𝑅 )  ↑m  ( ( 1 ... 𝑁 )  ×  ( 1 ... 𝑁 ) ) ) ) | 
						
							| 51 | 14 | simpld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  ∧  𝐼  ≤  𝑥 )  →  𝑥  ∈  ( 𝐼 ... 𝑁 ) ) | 
						
							| 52 | 9 51 | syldanl | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  ∧  𝐼  ≤  𝑥 )  →  𝑥  ∈  ( 𝐼 ... 𝑁 ) ) | 
						
							| 53 | 52 | adantr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  ∧  𝐼  ≤  𝑥 )  ∧  𝐽  ≤  𝑦 )  →  𝑥  ∈  ( 𝐼 ... 𝑁 ) ) | 
						
							| 54 | 23 | simpld | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  ∧  𝐽  ≤  𝑦 )  →  𝑦  ∈  ( 𝐽 ... 𝑁 ) ) | 
						
							| 55 | 18 54 | syldanl | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  ∧  𝐽  ≤  𝑦 )  →  𝑦  ∈  ( 𝐽 ... 𝑁 ) ) | 
						
							| 56 | 55 | adantlr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  ∧  𝐼  ≤  𝑥 )  ∧  𝐽  ≤  𝑦 )  →  𝑦  ∈  ( 𝐽 ... 𝑁 ) ) | 
						
							| 57 | 43 44 44 45 46 50 53 56 | smatbr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  ∧  𝐼  ≤  𝑥 )  ∧  𝐽  ≤  𝑦 )  →  ( 𝑥 ( 𝐼 ( subMat1 ‘ 𝐸 ) 𝐽 ) 𝑦 )  =  ( ( 𝑥  +  1 ) 𝐸 ( 𝑦  +  1 ) ) ) | 
						
							| 58 |  | eqid | ⊢ ( 𝐼 ( subMat1 ‘ 𝐹 ) 𝐽 )  =  ( 𝐼 ( subMat1 ‘ 𝐹 ) 𝐽 ) | 
						
							| 59 | 1 47 2 | matbas2i | ⊢ ( 𝐹  ∈  𝐵  →  𝐹  ∈  ( ( Base ‘ 𝑅 )  ↑m  ( ( 1 ... 𝑁 )  ×  ( 1 ... 𝑁 ) ) ) ) | 
						
							| 60 | 7 59 | syl | ⊢ ( 𝜑  →  𝐹  ∈  ( ( Base ‘ 𝑅 )  ↑m  ( ( 1 ... 𝑁 )  ×  ( 1 ... 𝑁 ) ) ) ) | 
						
							| 61 | 60 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  ∧  𝐼  ≤  𝑥 )  ∧  𝐽  ≤  𝑦 )  →  𝐹  ∈  ( ( Base ‘ 𝑅 )  ↑m  ( ( 1 ... 𝑁 )  ×  ( 1 ... 𝑁 ) ) ) ) | 
						
							| 62 | 58 44 44 45 46 61 53 56 | smatbr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  ∧  𝐼  ≤  𝑥 )  ∧  𝐽  ≤  𝑦 )  →  ( 𝑥 ( 𝐼 ( subMat1 ‘ 𝐹 ) 𝐽 ) 𝑦 )  =  ( ( 𝑥  +  1 ) 𝐹 ( 𝑦  +  1 ) ) ) | 
						
							| 63 | 42 57 62 | 3eqtr4d | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  ∧  𝐼  ≤  𝑥 )  ∧  𝐽  ≤  𝑦 )  →  ( 𝑥 ( 𝐼 ( subMat1 ‘ 𝐸 ) 𝐽 ) 𝑦 )  =  ( 𝑥 ( 𝐼 ( subMat1 ‘ 𝐹 ) 𝐽 ) 𝑦 ) ) | 
						
							| 64 | 16 | adantr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  ∧  𝐼  ≤  𝑥 )  ∧  𝑦  <  𝐽 )  →  ( 𝑥  +  1 )  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐼 } ) ) | 
						
							| 65 | 3 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  ∧  𝑦  <  𝐽 )  →  𝑁  ∈  ℕ ) | 
						
							| 66 | 5 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  ∧  𝑦  <  𝐽 )  →  𝐽  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 67 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  ∧  𝑦  <  𝐽 )  →  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) | 
						
							| 68 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  ∧  𝑦  <  𝐽 )  →  𝑦  <  𝐽 ) | 
						
							| 69 | 65 66 67 68 | submateqlem2 | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  ∧  𝑦  <  𝐽 )  →  ( 𝑦  ∈  ( 1 ..^ 𝐽 )  ∧  𝑦  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐽 } ) ) ) | 
						
							| 70 | 69 | simprd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  ∧  𝑦  <  𝐽 )  →  𝑦  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐽 } ) ) | 
						
							| 71 | 18 70 | syldanl | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  ∧  𝑦  <  𝐽 )  →  𝑦  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐽 } ) ) | 
						
							| 72 | 71 | adantlr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  ∧  𝐼  ≤  𝑥 )  ∧  𝑦  <  𝐽 )  →  𝑦  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐽 } ) ) | 
						
							| 73 | 64 72 | jca | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  ∧  𝐼  ≤  𝑥 )  ∧  𝑦  <  𝐽 )  →  ( ( 𝑥  +  1 )  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐼 } )  ∧  𝑦  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐽 } ) ) ) | 
						
							| 74 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 75 | 74 | a1i | ⊢ ( 𝜑  →  𝑦  ∈  V ) | 
						
							| 76 |  | simpl | ⊢ ( ( 𝑖  =  ( 𝑥  +  1 )  ∧  𝑗  =  𝑦 )  →  𝑖  =  ( 𝑥  +  1 ) ) | 
						
							| 77 | 76 | eleq1d | ⊢ ( ( 𝑖  =  ( 𝑥  +  1 )  ∧  𝑗  =  𝑦 )  →  ( 𝑖  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐼 } )  ↔  ( 𝑥  +  1 )  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐼 } ) ) ) | 
						
							| 78 |  | simpr | ⊢ ( ( 𝑖  =  ( 𝑥  +  1 )  ∧  𝑗  =  𝑦 )  →  𝑗  =  𝑦 ) | 
						
							| 79 |  | eqidd | ⊢ ( ( 𝑖  =  ( 𝑥  +  1 )  ∧  𝑗  =  𝑦 )  →  ( ( 1 ... 𝑁 )  ∖  { 𝐽 } )  =  ( ( 1 ... 𝑁 )  ∖  { 𝐽 } ) ) | 
						
							| 80 | 78 79 | eleq12d | ⊢ ( ( 𝑖  =  ( 𝑥  +  1 )  ∧  𝑗  =  𝑦 )  →  ( 𝑗  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐽 } )  ↔  𝑦  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐽 } ) ) ) | 
						
							| 81 | 77 80 | anbi12d | ⊢ ( ( 𝑖  =  ( 𝑥  +  1 )  ∧  𝑗  =  𝑦 )  →  ( ( 𝑖  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐼 } )  ∧  𝑗  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐽 } ) )  ↔  ( ( 𝑥  +  1 )  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐼 } )  ∧  𝑦  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐽 } ) ) ) ) | 
						
							| 82 |  | oveq12 | ⊢ ( ( 𝑖  =  ( 𝑥  +  1 )  ∧  𝑗  =  𝑦 )  →  ( 𝑖 𝐸 𝑗 )  =  ( ( 𝑥  +  1 ) 𝐸 𝑦 ) ) | 
						
							| 83 |  | oveq12 | ⊢ ( ( 𝑖  =  ( 𝑥  +  1 )  ∧  𝑗  =  𝑦 )  →  ( 𝑖 𝐹 𝑗 )  =  ( ( 𝑥  +  1 ) 𝐹 𝑦 ) ) | 
						
							| 84 | 82 83 | eqeq12d | ⊢ ( ( 𝑖  =  ( 𝑥  +  1 )  ∧  𝑗  =  𝑦 )  →  ( ( 𝑖 𝐸 𝑗 )  =  ( 𝑖 𝐹 𝑗 )  ↔  ( ( 𝑥  +  1 ) 𝐸 𝑦 )  =  ( ( 𝑥  +  1 ) 𝐹 𝑦 ) ) ) | 
						
							| 85 | 81 84 | imbi12d | ⊢ ( ( 𝑖  =  ( 𝑥  +  1 )  ∧  𝑗  =  𝑦 )  →  ( ( ( 𝑖  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐼 } )  ∧  𝑗  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐽 } ) )  →  ( 𝑖 𝐸 𝑗 )  =  ( 𝑖 𝐹 𝑗 ) )  ↔  ( ( ( 𝑥  +  1 )  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐼 } )  ∧  𝑦  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐽 } ) )  →  ( ( 𝑥  +  1 ) 𝐸 𝑦 )  =  ( ( 𝑥  +  1 ) 𝐹 𝑦 ) ) ) ) | 
						
							| 86 | 28 75 85 39 | vtocl2d | ⊢ ( 𝜑  →  ( ( ( 𝑥  +  1 )  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐼 } )  ∧  𝑦  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐽 } ) )  →  ( ( 𝑥  +  1 ) 𝐸 𝑦 )  =  ( ( 𝑥  +  1 ) 𝐹 𝑦 ) ) ) | 
						
							| 87 | 86 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  ∧  𝐼  ≤  𝑥 )  ∧  𝑦  <  𝐽 )  →  ( ( ( 𝑥  +  1 )  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐼 } )  ∧  𝑦  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐽 } ) )  →  ( ( 𝑥  +  1 ) 𝐸 𝑦 )  =  ( ( 𝑥  +  1 ) 𝐹 𝑦 ) ) ) | 
						
							| 88 | 73 87 | mpd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  ∧  𝐼  ≤  𝑥 )  ∧  𝑦  <  𝐽 )  →  ( ( 𝑥  +  1 ) 𝐸 𝑦 )  =  ( ( 𝑥  +  1 ) 𝐹 𝑦 ) ) | 
						
							| 89 | 3 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  ∧  𝐼  ≤  𝑥 )  ∧  𝑦  <  𝐽 )  →  𝑁  ∈  ℕ ) | 
						
							| 90 | 4 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  ∧  𝐼  ≤  𝑥 )  ∧  𝑦  <  𝐽 )  →  𝐼  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 91 | 5 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  ∧  𝐼  ≤  𝑥 )  ∧  𝑦  <  𝐽 )  →  𝐽  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 92 | 49 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  ∧  𝐼  ≤  𝑥 )  ∧  𝑦  <  𝐽 )  →  𝐸  ∈  ( ( Base ‘ 𝑅 )  ↑m  ( ( 1 ... 𝑁 )  ×  ( 1 ... 𝑁 ) ) ) ) | 
						
							| 93 | 52 | adantr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  ∧  𝐼  ≤  𝑥 )  ∧  𝑦  <  𝐽 )  →  𝑥  ∈  ( 𝐼 ... 𝑁 ) ) | 
						
							| 94 | 69 | simpld | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  ∧  𝑦  <  𝐽 )  →  𝑦  ∈  ( 1 ..^ 𝐽 ) ) | 
						
							| 95 | 18 94 | syldanl | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  ∧  𝑦  <  𝐽 )  →  𝑦  ∈  ( 1 ..^ 𝐽 ) ) | 
						
							| 96 | 95 | adantlr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  ∧  𝐼  ≤  𝑥 )  ∧  𝑦  <  𝐽 )  →  𝑦  ∈  ( 1 ..^ 𝐽 ) ) | 
						
							| 97 | 43 89 89 90 91 92 93 96 | smattr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  ∧  𝐼  ≤  𝑥 )  ∧  𝑦  <  𝐽 )  →  ( 𝑥 ( 𝐼 ( subMat1 ‘ 𝐸 ) 𝐽 ) 𝑦 )  =  ( ( 𝑥  +  1 ) 𝐸 𝑦 ) ) | 
						
							| 98 | 60 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  ∧  𝐼  ≤  𝑥 )  ∧  𝑦  <  𝐽 )  →  𝐹  ∈  ( ( Base ‘ 𝑅 )  ↑m  ( ( 1 ... 𝑁 )  ×  ( 1 ... 𝑁 ) ) ) ) | 
						
							| 99 | 58 89 89 90 91 98 93 96 | smattr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  ∧  𝐼  ≤  𝑥 )  ∧  𝑦  <  𝐽 )  →  ( 𝑥 ( 𝐼 ( subMat1 ‘ 𝐹 ) 𝐽 ) 𝑦 )  =  ( ( 𝑥  +  1 ) 𝐹 𝑦 ) ) | 
						
							| 100 | 88 97 99 | 3eqtr4d | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  ∧  𝐼  ≤  𝑥 )  ∧  𝑦  <  𝐽 )  →  ( 𝑥 ( 𝐼 ( subMat1 ‘ 𝐸 ) 𝐽 ) 𝑦 )  =  ( 𝑥 ( 𝐼 ( subMat1 ‘ 𝐹 ) 𝐽 ) 𝑦 ) ) | 
						
							| 101 |  | fz1ssnn | ⊢ ( 1 ... 𝑁 )  ⊆  ℕ | 
						
							| 102 | 101 5 | sselid | ⊢ ( 𝜑  →  𝐽  ∈  ℕ ) | 
						
							| 103 | 102 | nnred | ⊢ ( 𝜑  →  𝐽  ∈  ℝ ) | 
						
							| 104 | 103 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  →  𝐽  ∈  ℝ ) | 
						
							| 105 |  | fz1ssnn | ⊢ ( 1 ... ( 𝑁  −  1 ) )  ⊆  ℕ | 
						
							| 106 | 105 18 | sselid | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  →  𝑦  ∈  ℕ ) | 
						
							| 107 | 106 | nnred | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  →  𝑦  ∈  ℝ ) | 
						
							| 108 |  | lelttric | ⊢ ( ( 𝐽  ∈  ℝ  ∧  𝑦  ∈  ℝ )  →  ( 𝐽  ≤  𝑦  ∨  𝑦  <  𝐽 ) ) | 
						
							| 109 | 104 107 108 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  →  ( 𝐽  ≤  𝑦  ∨  𝑦  <  𝐽 ) ) | 
						
							| 110 | 109 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  ∧  𝐼  ≤  𝑥 )  →  ( 𝐽  ≤  𝑦  ∨  𝑦  <  𝐽 ) ) | 
						
							| 111 | 63 100 110 | mpjaodan | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  ∧  𝐼  ≤  𝑥 )  →  ( 𝑥 ( 𝐼 ( subMat1 ‘ 𝐸 ) 𝐽 ) 𝑦 )  =  ( 𝑥 ( 𝐼 ( subMat1 ‘ 𝐹 ) 𝐽 ) 𝑦 ) ) | 
						
							| 112 | 3 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  ∧  𝑥  <  𝐼 )  →  𝑁  ∈  ℕ ) | 
						
							| 113 | 4 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  ∧  𝑥  <  𝐼 )  →  𝐼  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 114 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  ∧  𝑥  <  𝐼 )  →  𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) | 
						
							| 115 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  ∧  𝑥  <  𝐼 )  →  𝑥  <  𝐼 ) | 
						
							| 116 | 112 113 114 115 | submateqlem2 | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  ∧  𝑥  <  𝐼 )  →  ( 𝑥  ∈  ( 1 ..^ 𝐼 )  ∧  𝑥  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐼 } ) ) ) | 
						
							| 117 | 116 | simprd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  ∧  𝑥  <  𝐼 )  →  𝑥  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐼 } ) ) | 
						
							| 118 | 9 117 | syldanl | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  ∧  𝑥  <  𝐼 )  →  𝑥  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐼 } ) ) | 
						
							| 119 | 118 | adantr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  ∧  𝑥  <  𝐼 )  ∧  𝐽  ≤  𝑦 )  →  𝑥  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐼 } ) ) | 
						
							| 120 | 25 | adantlr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  ∧  𝑥  <  𝐼 )  ∧  𝐽  ≤  𝑦 )  →  ( 𝑦  +  1 )  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐽 } ) ) | 
						
							| 121 | 119 120 | jca | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  ∧  𝑥  <  𝐼 )  ∧  𝐽  ≤  𝑦 )  →  ( 𝑥  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐼 } )  ∧  ( 𝑦  +  1 )  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐽 } ) ) ) | 
						
							| 122 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 123 | 122 | a1i | ⊢ ( 𝜑  →  𝑥  ∈  V ) | 
						
							| 124 |  | simpl | ⊢ ( ( 𝑖  =  𝑥  ∧  𝑗  =  ( 𝑦  +  1 ) )  →  𝑖  =  𝑥 ) | 
						
							| 125 | 124 | eleq1d | ⊢ ( ( 𝑖  =  𝑥  ∧  𝑗  =  ( 𝑦  +  1 ) )  →  ( 𝑖  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐼 } )  ↔  𝑥  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐼 } ) ) ) | 
						
							| 126 |  | simpr | ⊢ ( ( 𝑖  =  𝑥  ∧  𝑗  =  ( 𝑦  +  1 ) )  →  𝑗  =  ( 𝑦  +  1 ) ) | 
						
							| 127 | 126 | eleq1d | ⊢ ( ( 𝑖  =  𝑥  ∧  𝑗  =  ( 𝑦  +  1 ) )  →  ( 𝑗  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐽 } )  ↔  ( 𝑦  +  1 )  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐽 } ) ) ) | 
						
							| 128 | 125 127 | anbi12d | ⊢ ( ( 𝑖  =  𝑥  ∧  𝑗  =  ( 𝑦  +  1 ) )  →  ( ( 𝑖  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐼 } )  ∧  𝑗  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐽 } ) )  ↔  ( 𝑥  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐼 } )  ∧  ( 𝑦  +  1 )  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐽 } ) ) ) ) | 
						
							| 129 |  | oveq12 | ⊢ ( ( 𝑖  =  𝑥  ∧  𝑗  =  ( 𝑦  +  1 ) )  →  ( 𝑖 𝐸 𝑗 )  =  ( 𝑥 𝐸 ( 𝑦  +  1 ) ) ) | 
						
							| 130 |  | oveq12 | ⊢ ( ( 𝑖  =  𝑥  ∧  𝑗  =  ( 𝑦  +  1 ) )  →  ( 𝑖 𝐹 𝑗 )  =  ( 𝑥 𝐹 ( 𝑦  +  1 ) ) ) | 
						
							| 131 | 129 130 | eqeq12d | ⊢ ( ( 𝑖  =  𝑥  ∧  𝑗  =  ( 𝑦  +  1 ) )  →  ( ( 𝑖 𝐸 𝑗 )  =  ( 𝑖 𝐹 𝑗 )  ↔  ( 𝑥 𝐸 ( 𝑦  +  1 ) )  =  ( 𝑥 𝐹 ( 𝑦  +  1 ) ) ) ) | 
						
							| 132 | 128 131 | imbi12d | ⊢ ( ( 𝑖  =  𝑥  ∧  𝑗  =  ( 𝑦  +  1 ) )  →  ( ( ( 𝑖  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐼 } )  ∧  𝑗  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐽 } ) )  →  ( 𝑖 𝐸 𝑗 )  =  ( 𝑖 𝐹 𝑗 ) )  ↔  ( ( 𝑥  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐼 } )  ∧  ( 𝑦  +  1 )  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐽 } ) )  →  ( 𝑥 𝐸 ( 𝑦  +  1 ) )  =  ( 𝑥 𝐹 ( 𝑦  +  1 ) ) ) ) ) | 
						
							| 133 | 123 29 132 39 | vtocl2d | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐼 } )  ∧  ( 𝑦  +  1 )  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐽 } ) )  →  ( 𝑥 𝐸 ( 𝑦  +  1 ) )  =  ( 𝑥 𝐹 ( 𝑦  +  1 ) ) ) ) | 
						
							| 134 | 133 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  ∧  𝑥  <  𝐼 )  ∧  𝐽  ≤  𝑦 )  →  ( ( 𝑥  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐼 } )  ∧  ( 𝑦  +  1 )  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐽 } ) )  →  ( 𝑥 𝐸 ( 𝑦  +  1 ) )  =  ( 𝑥 𝐹 ( 𝑦  +  1 ) ) ) ) | 
						
							| 135 | 121 134 | mpd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  ∧  𝑥  <  𝐼 )  ∧  𝐽  ≤  𝑦 )  →  ( 𝑥 𝐸 ( 𝑦  +  1 ) )  =  ( 𝑥 𝐹 ( 𝑦  +  1 ) ) ) | 
						
							| 136 | 3 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  ∧  𝑥  <  𝐼 )  ∧  𝐽  ≤  𝑦 )  →  𝑁  ∈  ℕ ) | 
						
							| 137 | 4 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  ∧  𝑥  <  𝐼 )  ∧  𝐽  ≤  𝑦 )  →  𝐼  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 138 | 5 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  ∧  𝑥  <  𝐼 )  ∧  𝐽  ≤  𝑦 )  →  𝐽  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 139 | 49 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  ∧  𝑥  <  𝐼 )  ∧  𝐽  ≤  𝑦 )  →  𝐸  ∈  ( ( Base ‘ 𝑅 )  ↑m  ( ( 1 ... 𝑁 )  ×  ( 1 ... 𝑁 ) ) ) ) | 
						
							| 140 | 116 | simpld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  ∧  𝑥  <  𝐼 )  →  𝑥  ∈  ( 1 ..^ 𝐼 ) ) | 
						
							| 141 | 9 140 | syldanl | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  ∧  𝑥  <  𝐼 )  →  𝑥  ∈  ( 1 ..^ 𝐼 ) ) | 
						
							| 142 | 141 | adantr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  ∧  𝑥  <  𝐼 )  ∧  𝐽  ≤  𝑦 )  →  𝑥  ∈  ( 1 ..^ 𝐼 ) ) | 
						
							| 143 | 55 | adantlr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  ∧  𝑥  <  𝐼 )  ∧  𝐽  ≤  𝑦 )  →  𝑦  ∈  ( 𝐽 ... 𝑁 ) ) | 
						
							| 144 | 43 136 136 137 138 139 142 143 | smatbl | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  ∧  𝑥  <  𝐼 )  ∧  𝐽  ≤  𝑦 )  →  ( 𝑥 ( 𝐼 ( subMat1 ‘ 𝐸 ) 𝐽 ) 𝑦 )  =  ( 𝑥 𝐸 ( 𝑦  +  1 ) ) ) | 
						
							| 145 | 60 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  ∧  𝑥  <  𝐼 )  ∧  𝐽  ≤  𝑦 )  →  𝐹  ∈  ( ( Base ‘ 𝑅 )  ↑m  ( ( 1 ... 𝑁 )  ×  ( 1 ... 𝑁 ) ) ) ) | 
						
							| 146 | 58 136 136 137 138 145 142 143 | smatbl | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  ∧  𝑥  <  𝐼 )  ∧  𝐽  ≤  𝑦 )  →  ( 𝑥 ( 𝐼 ( subMat1 ‘ 𝐹 ) 𝐽 ) 𝑦 )  =  ( 𝑥 𝐹 ( 𝑦  +  1 ) ) ) | 
						
							| 147 | 135 144 146 | 3eqtr4d | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  ∧  𝑥  <  𝐼 )  ∧  𝐽  ≤  𝑦 )  →  ( 𝑥 ( 𝐼 ( subMat1 ‘ 𝐸 ) 𝐽 ) 𝑦 )  =  ( 𝑥 ( 𝐼 ( subMat1 ‘ 𝐹 ) 𝐽 ) 𝑦 ) ) | 
						
							| 148 | 118 | adantr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  ∧  𝑥  <  𝐼 )  ∧  𝑦  <  𝐽 )  →  𝑥  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐼 } ) ) | 
						
							| 149 | 71 | adantlr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  ∧  𝑥  <  𝐼 )  ∧  𝑦  <  𝐽 )  →  𝑦  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐽 } ) ) | 
						
							| 150 | 148 149 | jca | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  ∧  𝑥  <  𝐼 )  ∧  𝑦  <  𝐽 )  →  ( 𝑥  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐼 } )  ∧  𝑦  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐽 } ) ) ) | 
						
							| 151 |  | simpl | ⊢ ( ( 𝑖  =  𝑥  ∧  𝑗  =  𝑦 )  →  𝑖  =  𝑥 ) | 
						
							| 152 | 151 | eleq1d | ⊢ ( ( 𝑖  =  𝑥  ∧  𝑗  =  𝑦 )  →  ( 𝑖  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐼 } )  ↔  𝑥  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐼 } ) ) ) | 
						
							| 153 |  | simpr | ⊢ ( ( 𝑖  =  𝑥  ∧  𝑗  =  𝑦 )  →  𝑗  =  𝑦 ) | 
						
							| 154 | 153 | eleq1d | ⊢ ( ( 𝑖  =  𝑥  ∧  𝑗  =  𝑦 )  →  ( 𝑗  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐽 } )  ↔  𝑦  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐽 } ) ) ) | 
						
							| 155 | 152 154 | anbi12d | ⊢ ( ( 𝑖  =  𝑥  ∧  𝑗  =  𝑦 )  →  ( ( 𝑖  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐼 } )  ∧  𝑗  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐽 } ) )  ↔  ( 𝑥  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐼 } )  ∧  𝑦  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐽 } ) ) ) ) | 
						
							| 156 |  | oveq12 | ⊢ ( ( 𝑖  =  𝑥  ∧  𝑗  =  𝑦 )  →  ( 𝑖 𝐸 𝑗 )  =  ( 𝑥 𝐸 𝑦 ) ) | 
						
							| 157 |  | oveq12 | ⊢ ( ( 𝑖  =  𝑥  ∧  𝑗  =  𝑦 )  →  ( 𝑖 𝐹 𝑗 )  =  ( 𝑥 𝐹 𝑦 ) ) | 
						
							| 158 | 156 157 | eqeq12d | ⊢ ( ( 𝑖  =  𝑥  ∧  𝑗  =  𝑦 )  →  ( ( 𝑖 𝐸 𝑗 )  =  ( 𝑖 𝐹 𝑗 )  ↔  ( 𝑥 𝐸 𝑦 )  =  ( 𝑥 𝐹 𝑦 ) ) ) | 
						
							| 159 | 155 158 | imbi12d | ⊢ ( ( 𝑖  =  𝑥  ∧  𝑗  =  𝑦 )  →  ( ( ( 𝑖  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐼 } )  ∧  𝑗  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐽 } ) )  →  ( 𝑖 𝐸 𝑗 )  =  ( 𝑖 𝐹 𝑗 ) )  ↔  ( ( 𝑥  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐼 } )  ∧  𝑦  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐽 } ) )  →  ( 𝑥 𝐸 𝑦 )  =  ( 𝑥 𝐹 𝑦 ) ) ) ) | 
						
							| 160 | 123 75 159 39 | vtocl2d | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐼 } )  ∧  𝑦  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐽 } ) )  →  ( 𝑥 𝐸 𝑦 )  =  ( 𝑥 𝐹 𝑦 ) ) ) | 
						
							| 161 | 160 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  ∧  𝑥  <  𝐼 )  ∧  𝑦  <  𝐽 )  →  ( ( 𝑥  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐼 } )  ∧  𝑦  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐽 } ) )  →  ( 𝑥 𝐸 𝑦 )  =  ( 𝑥 𝐹 𝑦 ) ) ) | 
						
							| 162 | 150 161 | mpd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  ∧  𝑥  <  𝐼 )  ∧  𝑦  <  𝐽 )  →  ( 𝑥 𝐸 𝑦 )  =  ( 𝑥 𝐹 𝑦 ) ) | 
						
							| 163 | 3 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  ∧  𝑥  <  𝐼 )  ∧  𝑦  <  𝐽 )  →  𝑁  ∈  ℕ ) | 
						
							| 164 | 4 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  ∧  𝑥  <  𝐼 )  ∧  𝑦  <  𝐽 )  →  𝐼  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 165 | 5 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  ∧  𝑥  <  𝐼 )  ∧  𝑦  <  𝐽 )  →  𝐽  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 166 | 49 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  ∧  𝑥  <  𝐼 )  ∧  𝑦  <  𝐽 )  →  𝐸  ∈  ( ( Base ‘ 𝑅 )  ↑m  ( ( 1 ... 𝑁 )  ×  ( 1 ... 𝑁 ) ) ) ) | 
						
							| 167 | 141 | adantr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  ∧  𝑥  <  𝐼 )  ∧  𝑦  <  𝐽 )  →  𝑥  ∈  ( 1 ..^ 𝐼 ) ) | 
						
							| 168 | 95 | adantlr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  ∧  𝑥  <  𝐼 )  ∧  𝑦  <  𝐽 )  →  𝑦  ∈  ( 1 ..^ 𝐽 ) ) | 
						
							| 169 | 43 163 163 164 165 166 167 168 | smattl | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  ∧  𝑥  <  𝐼 )  ∧  𝑦  <  𝐽 )  →  ( 𝑥 ( 𝐼 ( subMat1 ‘ 𝐸 ) 𝐽 ) 𝑦 )  =  ( 𝑥 𝐸 𝑦 ) ) | 
						
							| 170 | 60 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  ∧  𝑥  <  𝐼 )  ∧  𝑦  <  𝐽 )  →  𝐹  ∈  ( ( Base ‘ 𝑅 )  ↑m  ( ( 1 ... 𝑁 )  ×  ( 1 ... 𝑁 ) ) ) ) | 
						
							| 171 | 58 163 163 164 165 170 167 168 | smattl | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  ∧  𝑥  <  𝐼 )  ∧  𝑦  <  𝐽 )  →  ( 𝑥 ( 𝐼 ( subMat1 ‘ 𝐹 ) 𝐽 ) 𝑦 )  =  ( 𝑥 𝐹 𝑦 ) ) | 
						
							| 172 | 162 169 171 | 3eqtr4d | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  ∧  𝑥  <  𝐼 )  ∧  𝑦  <  𝐽 )  →  ( 𝑥 ( 𝐼 ( subMat1 ‘ 𝐸 ) 𝐽 ) 𝑦 )  =  ( 𝑥 ( 𝐼 ( subMat1 ‘ 𝐹 ) 𝐽 ) 𝑦 ) ) | 
						
							| 173 | 109 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  ∧  𝑥  <  𝐼 )  →  ( 𝐽  ≤  𝑦  ∨  𝑦  <  𝐽 ) ) | 
						
							| 174 | 147 172 173 | mpjaodan | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  ∧  𝑥  <  𝐼 )  →  ( 𝑥 ( 𝐼 ( subMat1 ‘ 𝐸 ) 𝐽 ) 𝑦 )  =  ( 𝑥 ( 𝐼 ( subMat1 ‘ 𝐹 ) 𝐽 ) 𝑦 ) ) | 
						
							| 175 | 101 4 | sselid | ⊢ ( 𝜑  →  𝐼  ∈  ℕ ) | 
						
							| 176 | 175 | nnred | ⊢ ( 𝜑  →  𝐼  ∈  ℝ ) | 
						
							| 177 | 176 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  →  𝐼  ∈  ℝ ) | 
						
							| 178 | 105 9 | sselid | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  →  𝑥  ∈  ℕ ) | 
						
							| 179 | 178 | nnred | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  →  𝑥  ∈  ℝ ) | 
						
							| 180 |  | lelttric | ⊢ ( ( 𝐼  ∈  ℝ  ∧  𝑥  ∈  ℝ )  →  ( 𝐼  ≤  𝑥  ∨  𝑥  <  𝐼 ) ) | 
						
							| 181 | 177 179 180 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  →  ( 𝐼  ≤  𝑥  ∨  𝑥  <  𝐼 ) ) | 
						
							| 182 | 111 174 181 | mpjaodan | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  →  ( 𝑥 ( 𝐼 ( subMat1 ‘ 𝐸 ) 𝐽 ) 𝑦 )  =  ( 𝑥 ( 𝐼 ( subMat1 ‘ 𝐹 ) 𝐽 ) 𝑦 ) ) | 
						
							| 183 | 182 | ralrimivva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) ) ∀ 𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) ( 𝑥 ( 𝐼 ( subMat1 ‘ 𝐸 ) 𝐽 ) 𝑦 )  =  ( 𝑥 ( 𝐼 ( subMat1 ‘ 𝐹 ) 𝐽 ) 𝑦 ) ) | 
						
							| 184 |  | eqid | ⊢ ( Base ‘ ( ( 1 ... ( 𝑁  −  1 ) )  Mat  𝑅 ) )  =  ( Base ‘ ( ( 1 ... ( 𝑁  −  1 ) )  Mat  𝑅 ) ) | 
						
							| 185 | 1 2 184 43 3 4 5 6 | smatcl | ⊢ ( 𝜑  →  ( 𝐼 ( subMat1 ‘ 𝐸 ) 𝐽 )  ∈  ( Base ‘ ( ( 1 ... ( 𝑁  −  1 ) )  Mat  𝑅 ) ) ) | 
						
							| 186 | 1 2 184 58 3 4 5 7 | smatcl | ⊢ ( 𝜑  →  ( 𝐼 ( subMat1 ‘ 𝐹 ) 𝐽 )  ∈  ( Base ‘ ( ( 1 ... ( 𝑁  −  1 ) )  Mat  𝑅 ) ) ) | 
						
							| 187 |  | eqid | ⊢ ( ( 1 ... ( 𝑁  −  1 ) )  Mat  𝑅 )  =  ( ( 1 ... ( 𝑁  −  1 ) )  Mat  𝑅 ) | 
						
							| 188 | 187 184 | eqmat | ⊢ ( ( ( 𝐼 ( subMat1 ‘ 𝐸 ) 𝐽 )  ∈  ( Base ‘ ( ( 1 ... ( 𝑁  −  1 ) )  Mat  𝑅 ) )  ∧  ( 𝐼 ( subMat1 ‘ 𝐹 ) 𝐽 )  ∈  ( Base ‘ ( ( 1 ... ( 𝑁  −  1 ) )  Mat  𝑅 ) ) )  →  ( ( 𝐼 ( subMat1 ‘ 𝐸 ) 𝐽 )  =  ( 𝐼 ( subMat1 ‘ 𝐹 ) 𝐽 )  ↔  ∀ 𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) ) ∀ 𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) ( 𝑥 ( 𝐼 ( subMat1 ‘ 𝐸 ) 𝐽 ) 𝑦 )  =  ( 𝑥 ( 𝐼 ( subMat1 ‘ 𝐹 ) 𝐽 ) 𝑦 ) ) ) | 
						
							| 189 | 185 186 188 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐼 ( subMat1 ‘ 𝐸 ) 𝐽 )  =  ( 𝐼 ( subMat1 ‘ 𝐹 ) 𝐽 )  ↔  ∀ 𝑥  ∈  ( 1 ... ( 𝑁  −  1 ) ) ∀ 𝑦  ∈  ( 1 ... ( 𝑁  −  1 ) ) ( 𝑥 ( 𝐼 ( subMat1 ‘ 𝐸 ) 𝐽 ) 𝑦 )  =  ( 𝑥 ( 𝐼 ( subMat1 ‘ 𝐹 ) 𝐽 ) 𝑦 ) ) ) | 
						
							| 190 | 183 189 | mpbird | ⊢ ( 𝜑  →  ( 𝐼 ( subMat1 ‘ 𝐸 ) 𝐽 )  =  ( 𝐼 ( subMat1 ‘ 𝐹 ) 𝐽 ) ) |