| Step |
Hyp |
Ref |
Expression |
| 1 |
|
submateqlem1.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 2 |
|
submateqlem1.k |
⊢ ( 𝜑 → 𝐾 ∈ ( 1 ... 𝑁 ) ) |
| 3 |
|
submateqlem1.m |
⊢ ( 𝜑 → 𝑀 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) |
| 4 |
|
submateqlem1.1 |
⊢ ( 𝜑 → 𝐾 ≤ 𝑀 ) |
| 5 |
|
fz1ssnn |
⊢ ( 1 ... 𝑁 ) ⊆ ℕ |
| 6 |
5 2
|
sselid |
⊢ ( 𝜑 → 𝐾 ∈ ℕ ) |
| 7 |
6
|
nnzd |
⊢ ( 𝜑 → 𝐾 ∈ ℤ ) |
| 8 |
1
|
nnzd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 9 |
|
fz1ssnn |
⊢ ( 1 ... ( 𝑁 − 1 ) ) ⊆ ℕ |
| 10 |
9 3
|
sselid |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
| 11 |
10
|
nnzd |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 12 |
10
|
nnred |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
| 13 |
1
|
nnred |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
| 14 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
| 15 |
13 14
|
resubcld |
⊢ ( 𝜑 → ( 𝑁 − 1 ) ∈ ℝ ) |
| 16 |
|
elfzle2 |
⊢ ( 𝑀 ∈ ( 1 ... ( 𝑁 − 1 ) ) → 𝑀 ≤ ( 𝑁 − 1 ) ) |
| 17 |
3 16
|
syl |
⊢ ( 𝜑 → 𝑀 ≤ ( 𝑁 − 1 ) ) |
| 18 |
13
|
lem1d |
⊢ ( 𝜑 → ( 𝑁 − 1 ) ≤ 𝑁 ) |
| 19 |
12 15 13 17 18
|
letrd |
⊢ ( 𝜑 → 𝑀 ≤ 𝑁 ) |
| 20 |
7 8 11 4 19
|
elfzd |
⊢ ( 𝜑 → 𝑀 ∈ ( 𝐾 ... 𝑁 ) ) |
| 21 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
| 22 |
11
|
peano2zd |
⊢ ( 𝜑 → ( 𝑀 + 1 ) ∈ ℤ ) |
| 23 |
10
|
nnnn0d |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
| 24 |
23
|
nn0ge0d |
⊢ ( 𝜑 → 0 ≤ 𝑀 ) |
| 25 |
|
1re |
⊢ 1 ∈ ℝ |
| 26 |
|
addge02 |
⊢ ( ( 1 ∈ ℝ ∧ 𝑀 ∈ ℝ ) → ( 0 ≤ 𝑀 ↔ 1 ≤ ( 𝑀 + 1 ) ) ) |
| 27 |
25 12 26
|
sylancr |
⊢ ( 𝜑 → ( 0 ≤ 𝑀 ↔ 1 ≤ ( 𝑀 + 1 ) ) ) |
| 28 |
24 27
|
mpbid |
⊢ ( 𝜑 → 1 ≤ ( 𝑀 + 1 ) ) |
| 29 |
1
|
nnnn0d |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 30 |
|
nn0ltlem1 |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑀 < 𝑁 ↔ 𝑀 ≤ ( 𝑁 − 1 ) ) ) |
| 31 |
23 29 30
|
syl2anc |
⊢ ( 𝜑 → ( 𝑀 < 𝑁 ↔ 𝑀 ≤ ( 𝑁 − 1 ) ) ) |
| 32 |
17 31
|
mpbird |
⊢ ( 𝜑 → 𝑀 < 𝑁 ) |
| 33 |
|
nnltp1le |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 < 𝑁 ↔ ( 𝑀 + 1 ) ≤ 𝑁 ) ) |
| 34 |
10 1 33
|
syl2anc |
⊢ ( 𝜑 → ( 𝑀 < 𝑁 ↔ ( 𝑀 + 1 ) ≤ 𝑁 ) ) |
| 35 |
32 34
|
mpbid |
⊢ ( 𝜑 → ( 𝑀 + 1 ) ≤ 𝑁 ) |
| 36 |
21 8 22 28 35
|
elfzd |
⊢ ( 𝜑 → ( 𝑀 + 1 ) ∈ ( 1 ... 𝑁 ) ) |
| 37 |
6
|
nnred |
⊢ ( 𝜑 → 𝐾 ∈ ℝ ) |
| 38 |
|
nnleltp1 |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ) → ( 𝐾 ≤ 𝑀 ↔ 𝐾 < ( 𝑀 + 1 ) ) ) |
| 39 |
6 10 38
|
syl2anc |
⊢ ( 𝜑 → ( 𝐾 ≤ 𝑀 ↔ 𝐾 < ( 𝑀 + 1 ) ) ) |
| 40 |
4 39
|
mpbid |
⊢ ( 𝜑 → 𝐾 < ( 𝑀 + 1 ) ) |
| 41 |
37 40
|
ltned |
⊢ ( 𝜑 → 𝐾 ≠ ( 𝑀 + 1 ) ) |
| 42 |
41
|
necomd |
⊢ ( 𝜑 → ( 𝑀 + 1 ) ≠ 𝐾 ) |
| 43 |
|
nelsn |
⊢ ( ( 𝑀 + 1 ) ≠ 𝐾 → ¬ ( 𝑀 + 1 ) ∈ { 𝐾 } ) |
| 44 |
42 43
|
syl |
⊢ ( 𝜑 → ¬ ( 𝑀 + 1 ) ∈ { 𝐾 } ) |
| 45 |
36 44
|
eldifd |
⊢ ( 𝜑 → ( 𝑀 + 1 ) ∈ ( ( 1 ... 𝑁 ) ∖ { 𝐾 } ) ) |
| 46 |
20 45
|
jca |
⊢ ( 𝜑 → ( 𝑀 ∈ ( 𝐾 ... 𝑁 ) ∧ ( 𝑀 + 1 ) ∈ ( ( 1 ... 𝑁 ) ∖ { 𝐾 } ) ) ) |