Step |
Hyp |
Ref |
Expression |
1 |
|
submateqlem1.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
2 |
|
submateqlem1.k |
⊢ ( 𝜑 → 𝐾 ∈ ( 1 ... 𝑁 ) ) |
3 |
|
submateqlem1.m |
⊢ ( 𝜑 → 𝑀 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) |
4 |
|
submateqlem1.1 |
⊢ ( 𝜑 → 𝐾 ≤ 𝑀 ) |
5 |
|
fz1ssnn |
⊢ ( 1 ... 𝑁 ) ⊆ ℕ |
6 |
5 2
|
sselid |
⊢ ( 𝜑 → 𝐾 ∈ ℕ ) |
7 |
6
|
nnzd |
⊢ ( 𝜑 → 𝐾 ∈ ℤ ) |
8 |
1
|
nnzd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
9 |
|
fz1ssnn |
⊢ ( 1 ... ( 𝑁 − 1 ) ) ⊆ ℕ |
10 |
9 3
|
sselid |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
11 |
10
|
nnzd |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
12 |
10
|
nnred |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
13 |
1
|
nnred |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
14 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
15 |
13 14
|
resubcld |
⊢ ( 𝜑 → ( 𝑁 − 1 ) ∈ ℝ ) |
16 |
|
elfzle2 |
⊢ ( 𝑀 ∈ ( 1 ... ( 𝑁 − 1 ) ) → 𝑀 ≤ ( 𝑁 − 1 ) ) |
17 |
3 16
|
syl |
⊢ ( 𝜑 → 𝑀 ≤ ( 𝑁 − 1 ) ) |
18 |
13
|
lem1d |
⊢ ( 𝜑 → ( 𝑁 − 1 ) ≤ 𝑁 ) |
19 |
12 15 13 17 18
|
letrd |
⊢ ( 𝜑 → 𝑀 ≤ 𝑁 ) |
20 |
7 8 11 4 19
|
elfzd |
⊢ ( 𝜑 → 𝑀 ∈ ( 𝐾 ... 𝑁 ) ) |
21 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
22 |
11
|
peano2zd |
⊢ ( 𝜑 → ( 𝑀 + 1 ) ∈ ℤ ) |
23 |
10
|
nnnn0d |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
24 |
23
|
nn0ge0d |
⊢ ( 𝜑 → 0 ≤ 𝑀 ) |
25 |
|
1re |
⊢ 1 ∈ ℝ |
26 |
|
addge02 |
⊢ ( ( 1 ∈ ℝ ∧ 𝑀 ∈ ℝ ) → ( 0 ≤ 𝑀 ↔ 1 ≤ ( 𝑀 + 1 ) ) ) |
27 |
25 12 26
|
sylancr |
⊢ ( 𝜑 → ( 0 ≤ 𝑀 ↔ 1 ≤ ( 𝑀 + 1 ) ) ) |
28 |
24 27
|
mpbid |
⊢ ( 𝜑 → 1 ≤ ( 𝑀 + 1 ) ) |
29 |
1
|
nnnn0d |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
30 |
|
nn0ltlem1 |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑀 < 𝑁 ↔ 𝑀 ≤ ( 𝑁 − 1 ) ) ) |
31 |
23 29 30
|
syl2anc |
⊢ ( 𝜑 → ( 𝑀 < 𝑁 ↔ 𝑀 ≤ ( 𝑁 − 1 ) ) ) |
32 |
17 31
|
mpbird |
⊢ ( 𝜑 → 𝑀 < 𝑁 ) |
33 |
|
nnltp1le |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 < 𝑁 ↔ ( 𝑀 + 1 ) ≤ 𝑁 ) ) |
34 |
10 1 33
|
syl2anc |
⊢ ( 𝜑 → ( 𝑀 < 𝑁 ↔ ( 𝑀 + 1 ) ≤ 𝑁 ) ) |
35 |
32 34
|
mpbid |
⊢ ( 𝜑 → ( 𝑀 + 1 ) ≤ 𝑁 ) |
36 |
21 8 22 28 35
|
elfzd |
⊢ ( 𝜑 → ( 𝑀 + 1 ) ∈ ( 1 ... 𝑁 ) ) |
37 |
6
|
nnred |
⊢ ( 𝜑 → 𝐾 ∈ ℝ ) |
38 |
|
nnleltp1 |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ) → ( 𝐾 ≤ 𝑀 ↔ 𝐾 < ( 𝑀 + 1 ) ) ) |
39 |
6 10 38
|
syl2anc |
⊢ ( 𝜑 → ( 𝐾 ≤ 𝑀 ↔ 𝐾 < ( 𝑀 + 1 ) ) ) |
40 |
4 39
|
mpbid |
⊢ ( 𝜑 → 𝐾 < ( 𝑀 + 1 ) ) |
41 |
37 40
|
ltned |
⊢ ( 𝜑 → 𝐾 ≠ ( 𝑀 + 1 ) ) |
42 |
41
|
necomd |
⊢ ( 𝜑 → ( 𝑀 + 1 ) ≠ 𝐾 ) |
43 |
|
nelsn |
⊢ ( ( 𝑀 + 1 ) ≠ 𝐾 → ¬ ( 𝑀 + 1 ) ∈ { 𝐾 } ) |
44 |
42 43
|
syl |
⊢ ( 𝜑 → ¬ ( 𝑀 + 1 ) ∈ { 𝐾 } ) |
45 |
36 44
|
eldifd |
⊢ ( 𝜑 → ( 𝑀 + 1 ) ∈ ( ( 1 ... 𝑁 ) ∖ { 𝐾 } ) ) |
46 |
20 45
|
jca |
⊢ ( 𝜑 → ( 𝑀 ∈ ( 𝐾 ... 𝑁 ) ∧ ( 𝑀 + 1 ) ∈ ( ( 1 ... 𝑁 ) ∖ { 𝐾 } ) ) ) |