| Step | Hyp | Ref | Expression | 
						
							| 1 |  | submateqlem1.n | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 2 |  | submateqlem1.k | ⊢ ( 𝜑  →  𝐾  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 3 |  | submateqlem1.m | ⊢ ( 𝜑  →  𝑀  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) | 
						
							| 4 |  | submateqlem1.1 | ⊢ ( 𝜑  →  𝐾  ≤  𝑀 ) | 
						
							| 5 |  | fz1ssnn | ⊢ ( 1 ... 𝑁 )  ⊆  ℕ | 
						
							| 6 | 5 2 | sselid | ⊢ ( 𝜑  →  𝐾  ∈  ℕ ) | 
						
							| 7 | 6 | nnzd | ⊢ ( 𝜑  →  𝐾  ∈  ℤ ) | 
						
							| 8 | 1 | nnzd | ⊢ ( 𝜑  →  𝑁  ∈  ℤ ) | 
						
							| 9 |  | fz1ssnn | ⊢ ( 1 ... ( 𝑁  −  1 ) )  ⊆  ℕ | 
						
							| 10 | 9 3 | sselid | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 11 | 10 | nnzd | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 12 | 10 | nnred | ⊢ ( 𝜑  →  𝑀  ∈  ℝ ) | 
						
							| 13 | 1 | nnred | ⊢ ( 𝜑  →  𝑁  ∈  ℝ ) | 
						
							| 14 |  | 1red | ⊢ ( 𝜑  →  1  ∈  ℝ ) | 
						
							| 15 | 13 14 | resubcld | ⊢ ( 𝜑  →  ( 𝑁  −  1 )  ∈  ℝ ) | 
						
							| 16 |  | elfzle2 | ⊢ ( 𝑀  ∈  ( 1 ... ( 𝑁  −  1 ) )  →  𝑀  ≤  ( 𝑁  −  1 ) ) | 
						
							| 17 | 3 16 | syl | ⊢ ( 𝜑  →  𝑀  ≤  ( 𝑁  −  1 ) ) | 
						
							| 18 | 13 | lem1d | ⊢ ( 𝜑  →  ( 𝑁  −  1 )  ≤  𝑁 ) | 
						
							| 19 | 12 15 13 17 18 | letrd | ⊢ ( 𝜑  →  𝑀  ≤  𝑁 ) | 
						
							| 20 | 7 8 11 4 19 | elfzd | ⊢ ( 𝜑  →  𝑀  ∈  ( 𝐾 ... 𝑁 ) ) | 
						
							| 21 |  | 1zzd | ⊢ ( 𝜑  →  1  ∈  ℤ ) | 
						
							| 22 | 11 | peano2zd | ⊢ ( 𝜑  →  ( 𝑀  +  1 )  ∈  ℤ ) | 
						
							| 23 | 10 | nnnn0d | ⊢ ( 𝜑  →  𝑀  ∈  ℕ0 ) | 
						
							| 24 | 23 | nn0ge0d | ⊢ ( 𝜑  →  0  ≤  𝑀 ) | 
						
							| 25 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 26 |  | addge02 | ⊢ ( ( 1  ∈  ℝ  ∧  𝑀  ∈  ℝ )  →  ( 0  ≤  𝑀  ↔  1  ≤  ( 𝑀  +  1 ) ) ) | 
						
							| 27 | 25 12 26 | sylancr | ⊢ ( 𝜑  →  ( 0  ≤  𝑀  ↔  1  ≤  ( 𝑀  +  1 ) ) ) | 
						
							| 28 | 24 27 | mpbid | ⊢ ( 𝜑  →  1  ≤  ( 𝑀  +  1 ) ) | 
						
							| 29 | 1 | nnnn0d | ⊢ ( 𝜑  →  𝑁  ∈  ℕ0 ) | 
						
							| 30 |  | nn0ltlem1 | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑀  <  𝑁  ↔  𝑀  ≤  ( 𝑁  −  1 ) ) ) | 
						
							| 31 | 23 29 30 | syl2anc | ⊢ ( 𝜑  →  ( 𝑀  <  𝑁  ↔  𝑀  ≤  ( 𝑁  −  1 ) ) ) | 
						
							| 32 | 17 31 | mpbird | ⊢ ( 𝜑  →  𝑀  <  𝑁 ) | 
						
							| 33 |  | nnltp1le | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( 𝑀  <  𝑁  ↔  ( 𝑀  +  1 )  ≤  𝑁 ) ) | 
						
							| 34 | 10 1 33 | syl2anc | ⊢ ( 𝜑  →  ( 𝑀  <  𝑁  ↔  ( 𝑀  +  1 )  ≤  𝑁 ) ) | 
						
							| 35 | 32 34 | mpbid | ⊢ ( 𝜑  →  ( 𝑀  +  1 )  ≤  𝑁 ) | 
						
							| 36 | 21 8 22 28 35 | elfzd | ⊢ ( 𝜑  →  ( 𝑀  +  1 )  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 37 | 6 | nnred | ⊢ ( 𝜑  →  𝐾  ∈  ℝ ) | 
						
							| 38 |  | nnleltp1 | ⊢ ( ( 𝐾  ∈  ℕ  ∧  𝑀  ∈  ℕ )  →  ( 𝐾  ≤  𝑀  ↔  𝐾  <  ( 𝑀  +  1 ) ) ) | 
						
							| 39 | 6 10 38 | syl2anc | ⊢ ( 𝜑  →  ( 𝐾  ≤  𝑀  ↔  𝐾  <  ( 𝑀  +  1 ) ) ) | 
						
							| 40 | 4 39 | mpbid | ⊢ ( 𝜑  →  𝐾  <  ( 𝑀  +  1 ) ) | 
						
							| 41 | 37 40 | ltned | ⊢ ( 𝜑  →  𝐾  ≠  ( 𝑀  +  1 ) ) | 
						
							| 42 | 41 | necomd | ⊢ ( 𝜑  →  ( 𝑀  +  1 )  ≠  𝐾 ) | 
						
							| 43 |  | nelsn | ⊢ ( ( 𝑀  +  1 )  ≠  𝐾  →  ¬  ( 𝑀  +  1 )  ∈  { 𝐾 } ) | 
						
							| 44 | 42 43 | syl | ⊢ ( 𝜑  →  ¬  ( 𝑀  +  1 )  ∈  { 𝐾 } ) | 
						
							| 45 | 36 44 | eldifd | ⊢ ( 𝜑  →  ( 𝑀  +  1 )  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐾 } ) ) | 
						
							| 46 | 20 45 | jca | ⊢ ( 𝜑  →  ( 𝑀  ∈  ( 𝐾 ... 𝑁 )  ∧  ( 𝑀  +  1 )  ∈  ( ( 1 ... 𝑁 )  ∖  { 𝐾 } ) ) ) |