Step |
Hyp |
Ref |
Expression |
1 |
|
submateqlem1.n |
|
2 |
|
submateqlem1.k |
|
3 |
|
submateqlem1.m |
|
4 |
|
submateqlem1.1 |
|
5 |
|
fz1ssnn |
|
6 |
5 2
|
sselid |
|
7 |
6
|
nnzd |
|
8 |
1
|
nnzd |
|
9 |
|
fz1ssnn |
|
10 |
9 3
|
sselid |
|
11 |
10
|
nnzd |
|
12 |
10
|
nnred |
|
13 |
1
|
nnred |
|
14 |
|
1red |
|
15 |
13 14
|
resubcld |
|
16 |
|
elfzle2 |
|
17 |
3 16
|
syl |
|
18 |
13
|
lem1d |
|
19 |
12 15 13 17 18
|
letrd |
|
20 |
7 8 11 4 19
|
elfzd |
|
21 |
|
1zzd |
|
22 |
11
|
peano2zd |
|
23 |
10
|
nnnn0d |
|
24 |
23
|
nn0ge0d |
|
25 |
|
1re |
|
26 |
|
addge02 |
|
27 |
25 12 26
|
sylancr |
|
28 |
24 27
|
mpbid |
|
29 |
1
|
nnnn0d |
|
30 |
|
nn0ltlem1 |
|
31 |
23 29 30
|
syl2anc |
|
32 |
17 31
|
mpbird |
|
33 |
|
nnltp1le |
|
34 |
10 1 33
|
syl2anc |
|
35 |
32 34
|
mpbid |
|
36 |
21 8 22 28 35
|
elfzd |
|
37 |
6
|
nnred |
|
38 |
|
nnleltp1 |
|
39 |
6 10 38
|
syl2anc |
|
40 |
4 39
|
mpbid |
|
41 |
37 40
|
ltned |
|
42 |
41
|
necomd |
|
43 |
|
nelsn |
|
44 |
42 43
|
syl |
|
45 |
36 44
|
eldifd |
|
46 |
20 45
|
jca |
|