| Step |
Hyp |
Ref |
Expression |
| 1 |
|
submateqlem1.n |
|
| 2 |
|
submateqlem1.k |
|
| 3 |
|
submateqlem1.m |
|
| 4 |
|
submateqlem1.1 |
|
| 5 |
|
fz1ssnn |
|
| 6 |
5 2
|
sselid |
|
| 7 |
6
|
nnzd |
|
| 8 |
1
|
nnzd |
|
| 9 |
|
fz1ssnn |
|
| 10 |
9 3
|
sselid |
|
| 11 |
10
|
nnzd |
|
| 12 |
10
|
nnred |
|
| 13 |
1
|
nnred |
|
| 14 |
|
1red |
|
| 15 |
13 14
|
resubcld |
|
| 16 |
|
elfzle2 |
|
| 17 |
3 16
|
syl |
|
| 18 |
13
|
lem1d |
|
| 19 |
12 15 13 17 18
|
letrd |
|
| 20 |
7 8 11 4 19
|
elfzd |
|
| 21 |
|
1zzd |
|
| 22 |
11
|
peano2zd |
|
| 23 |
10
|
nnnn0d |
|
| 24 |
23
|
nn0ge0d |
|
| 25 |
|
1re |
|
| 26 |
|
addge02 |
|
| 27 |
25 12 26
|
sylancr |
|
| 28 |
24 27
|
mpbid |
|
| 29 |
1
|
nnnn0d |
|
| 30 |
|
nn0ltlem1 |
|
| 31 |
23 29 30
|
syl2anc |
|
| 32 |
17 31
|
mpbird |
|
| 33 |
|
nnltp1le |
|
| 34 |
10 1 33
|
syl2anc |
|
| 35 |
32 34
|
mpbid |
|
| 36 |
21 8 22 28 35
|
elfzd |
|
| 37 |
6
|
nnred |
|
| 38 |
|
nnleltp1 |
|
| 39 |
6 10 38
|
syl2anc |
|
| 40 |
4 39
|
mpbid |
|
| 41 |
37 40
|
ltned |
|
| 42 |
41
|
necomd |
|
| 43 |
|
nelsn |
|
| 44 |
42 43
|
syl |
|
| 45 |
36 44
|
eldifd |
|
| 46 |
20 45
|
jca |
|