Metamath Proof Explorer


Theorem submateqlem1

Description: Lemma for submateq . (Contributed by Thierry Arnoux, 25-Aug-2020)

Ref Expression
Hypotheses submateqlem1.n φ N
submateqlem1.k φ K 1 N
submateqlem1.m φ M 1 N 1
submateqlem1.1 φ K M
Assertion submateqlem1 φ M K N M + 1 1 N K

Proof

Step Hyp Ref Expression
1 submateqlem1.n φ N
2 submateqlem1.k φ K 1 N
3 submateqlem1.m φ M 1 N 1
4 submateqlem1.1 φ K M
5 fz1ssnn 1 N
6 5 2 sselid φ K
7 6 nnzd φ K
8 1 nnzd φ N
9 fz1ssnn 1 N 1
10 9 3 sselid φ M
11 10 nnzd φ M
12 10 nnred φ M
13 1 nnred φ N
14 1red φ 1
15 13 14 resubcld φ N 1
16 elfzle2 M 1 N 1 M N 1
17 3 16 syl φ M N 1
18 13 lem1d φ N 1 N
19 12 15 13 17 18 letrd φ M N
20 7 8 11 4 19 elfzd φ M K N
21 1zzd φ 1
22 11 peano2zd φ M + 1
23 10 nnnn0d φ M 0
24 23 nn0ge0d φ 0 M
25 1re 1
26 addge02 1 M 0 M 1 M + 1
27 25 12 26 sylancr φ 0 M 1 M + 1
28 24 27 mpbid φ 1 M + 1
29 1 nnnn0d φ N 0
30 nn0ltlem1 M 0 N 0 M < N M N 1
31 23 29 30 syl2anc φ M < N M N 1
32 17 31 mpbird φ M < N
33 nnltp1le M N M < N M + 1 N
34 10 1 33 syl2anc φ M < N M + 1 N
35 32 34 mpbid φ M + 1 N
36 21 8 22 28 35 elfzd φ M + 1 1 N
37 6 nnred φ K
38 nnleltp1 K M K M K < M + 1
39 6 10 38 syl2anc φ K M K < M + 1
40 4 39 mpbid φ K < M + 1
41 37 40 ltned φ K M + 1
42 41 necomd φ M + 1 K
43 nelsn M + 1 K ¬ M + 1 K
44 42 43 syl φ ¬ M + 1 K
45 36 44 eldifd φ M + 1 1 N K
46 20 45 jca φ M K N M + 1 1 N K