| Step |
Hyp |
Ref |
Expression |
| 1 |
|
submateqlem1.n |
|- ( ph -> N e. NN ) |
| 2 |
|
submateqlem1.k |
|- ( ph -> K e. ( 1 ... N ) ) |
| 3 |
|
submateqlem1.m |
|- ( ph -> M e. ( 1 ... ( N - 1 ) ) ) |
| 4 |
|
submateqlem1.1 |
|- ( ph -> K <_ M ) |
| 5 |
|
fz1ssnn |
|- ( 1 ... N ) C_ NN |
| 6 |
5 2
|
sselid |
|- ( ph -> K e. NN ) |
| 7 |
6
|
nnzd |
|- ( ph -> K e. ZZ ) |
| 8 |
1
|
nnzd |
|- ( ph -> N e. ZZ ) |
| 9 |
|
fz1ssnn |
|- ( 1 ... ( N - 1 ) ) C_ NN |
| 10 |
9 3
|
sselid |
|- ( ph -> M e. NN ) |
| 11 |
10
|
nnzd |
|- ( ph -> M e. ZZ ) |
| 12 |
10
|
nnred |
|- ( ph -> M e. RR ) |
| 13 |
1
|
nnred |
|- ( ph -> N e. RR ) |
| 14 |
|
1red |
|- ( ph -> 1 e. RR ) |
| 15 |
13 14
|
resubcld |
|- ( ph -> ( N - 1 ) e. RR ) |
| 16 |
|
elfzle2 |
|- ( M e. ( 1 ... ( N - 1 ) ) -> M <_ ( N - 1 ) ) |
| 17 |
3 16
|
syl |
|- ( ph -> M <_ ( N - 1 ) ) |
| 18 |
13
|
lem1d |
|- ( ph -> ( N - 1 ) <_ N ) |
| 19 |
12 15 13 17 18
|
letrd |
|- ( ph -> M <_ N ) |
| 20 |
7 8 11 4 19
|
elfzd |
|- ( ph -> M e. ( K ... N ) ) |
| 21 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
| 22 |
11
|
peano2zd |
|- ( ph -> ( M + 1 ) e. ZZ ) |
| 23 |
10
|
nnnn0d |
|- ( ph -> M e. NN0 ) |
| 24 |
23
|
nn0ge0d |
|- ( ph -> 0 <_ M ) |
| 25 |
|
1re |
|- 1 e. RR |
| 26 |
|
addge02 |
|- ( ( 1 e. RR /\ M e. RR ) -> ( 0 <_ M <-> 1 <_ ( M + 1 ) ) ) |
| 27 |
25 12 26
|
sylancr |
|- ( ph -> ( 0 <_ M <-> 1 <_ ( M + 1 ) ) ) |
| 28 |
24 27
|
mpbid |
|- ( ph -> 1 <_ ( M + 1 ) ) |
| 29 |
1
|
nnnn0d |
|- ( ph -> N e. NN0 ) |
| 30 |
|
nn0ltlem1 |
|- ( ( M e. NN0 /\ N e. NN0 ) -> ( M < N <-> M <_ ( N - 1 ) ) ) |
| 31 |
23 29 30
|
syl2anc |
|- ( ph -> ( M < N <-> M <_ ( N - 1 ) ) ) |
| 32 |
17 31
|
mpbird |
|- ( ph -> M < N ) |
| 33 |
|
nnltp1le |
|- ( ( M e. NN /\ N e. NN ) -> ( M < N <-> ( M + 1 ) <_ N ) ) |
| 34 |
10 1 33
|
syl2anc |
|- ( ph -> ( M < N <-> ( M + 1 ) <_ N ) ) |
| 35 |
32 34
|
mpbid |
|- ( ph -> ( M + 1 ) <_ N ) |
| 36 |
21 8 22 28 35
|
elfzd |
|- ( ph -> ( M + 1 ) e. ( 1 ... N ) ) |
| 37 |
6
|
nnred |
|- ( ph -> K e. RR ) |
| 38 |
|
nnleltp1 |
|- ( ( K e. NN /\ M e. NN ) -> ( K <_ M <-> K < ( M + 1 ) ) ) |
| 39 |
6 10 38
|
syl2anc |
|- ( ph -> ( K <_ M <-> K < ( M + 1 ) ) ) |
| 40 |
4 39
|
mpbid |
|- ( ph -> K < ( M + 1 ) ) |
| 41 |
37 40
|
ltned |
|- ( ph -> K =/= ( M + 1 ) ) |
| 42 |
41
|
necomd |
|- ( ph -> ( M + 1 ) =/= K ) |
| 43 |
|
nelsn |
|- ( ( M + 1 ) =/= K -> -. ( M + 1 ) e. { K } ) |
| 44 |
42 43
|
syl |
|- ( ph -> -. ( M + 1 ) e. { K } ) |
| 45 |
36 44
|
eldifd |
|- ( ph -> ( M + 1 ) e. ( ( 1 ... N ) \ { K } ) ) |
| 46 |
20 45
|
jca |
|- ( ph -> ( M e. ( K ... N ) /\ ( M + 1 ) e. ( ( 1 ... N ) \ { K } ) ) ) |