Step |
Hyp |
Ref |
Expression |
1 |
|
submateqlem1.n |
|- ( ph -> N e. NN ) |
2 |
|
submateqlem1.k |
|- ( ph -> K e. ( 1 ... N ) ) |
3 |
|
submateqlem1.m |
|- ( ph -> M e. ( 1 ... ( N - 1 ) ) ) |
4 |
|
submateqlem1.1 |
|- ( ph -> K <_ M ) |
5 |
|
fz1ssnn |
|- ( 1 ... N ) C_ NN |
6 |
5 2
|
sselid |
|- ( ph -> K e. NN ) |
7 |
6
|
nnzd |
|- ( ph -> K e. ZZ ) |
8 |
1
|
nnzd |
|- ( ph -> N e. ZZ ) |
9 |
|
fz1ssnn |
|- ( 1 ... ( N - 1 ) ) C_ NN |
10 |
9 3
|
sselid |
|- ( ph -> M e. NN ) |
11 |
10
|
nnzd |
|- ( ph -> M e. ZZ ) |
12 |
10
|
nnred |
|- ( ph -> M e. RR ) |
13 |
1
|
nnred |
|- ( ph -> N e. RR ) |
14 |
|
1red |
|- ( ph -> 1 e. RR ) |
15 |
13 14
|
resubcld |
|- ( ph -> ( N - 1 ) e. RR ) |
16 |
|
elfzle2 |
|- ( M e. ( 1 ... ( N - 1 ) ) -> M <_ ( N - 1 ) ) |
17 |
3 16
|
syl |
|- ( ph -> M <_ ( N - 1 ) ) |
18 |
13
|
lem1d |
|- ( ph -> ( N - 1 ) <_ N ) |
19 |
12 15 13 17 18
|
letrd |
|- ( ph -> M <_ N ) |
20 |
7 8 11 4 19
|
elfzd |
|- ( ph -> M e. ( K ... N ) ) |
21 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
22 |
11
|
peano2zd |
|- ( ph -> ( M + 1 ) e. ZZ ) |
23 |
10
|
nnnn0d |
|- ( ph -> M e. NN0 ) |
24 |
23
|
nn0ge0d |
|- ( ph -> 0 <_ M ) |
25 |
|
1re |
|- 1 e. RR |
26 |
|
addge02 |
|- ( ( 1 e. RR /\ M e. RR ) -> ( 0 <_ M <-> 1 <_ ( M + 1 ) ) ) |
27 |
25 12 26
|
sylancr |
|- ( ph -> ( 0 <_ M <-> 1 <_ ( M + 1 ) ) ) |
28 |
24 27
|
mpbid |
|- ( ph -> 1 <_ ( M + 1 ) ) |
29 |
1
|
nnnn0d |
|- ( ph -> N e. NN0 ) |
30 |
|
nn0ltlem1 |
|- ( ( M e. NN0 /\ N e. NN0 ) -> ( M < N <-> M <_ ( N - 1 ) ) ) |
31 |
23 29 30
|
syl2anc |
|- ( ph -> ( M < N <-> M <_ ( N - 1 ) ) ) |
32 |
17 31
|
mpbird |
|- ( ph -> M < N ) |
33 |
|
nnltp1le |
|- ( ( M e. NN /\ N e. NN ) -> ( M < N <-> ( M + 1 ) <_ N ) ) |
34 |
10 1 33
|
syl2anc |
|- ( ph -> ( M < N <-> ( M + 1 ) <_ N ) ) |
35 |
32 34
|
mpbid |
|- ( ph -> ( M + 1 ) <_ N ) |
36 |
21 8 22 28 35
|
elfzd |
|- ( ph -> ( M + 1 ) e. ( 1 ... N ) ) |
37 |
6
|
nnred |
|- ( ph -> K e. RR ) |
38 |
|
nnleltp1 |
|- ( ( K e. NN /\ M e. NN ) -> ( K <_ M <-> K < ( M + 1 ) ) ) |
39 |
6 10 38
|
syl2anc |
|- ( ph -> ( K <_ M <-> K < ( M + 1 ) ) ) |
40 |
4 39
|
mpbid |
|- ( ph -> K < ( M + 1 ) ) |
41 |
37 40
|
ltned |
|- ( ph -> K =/= ( M + 1 ) ) |
42 |
41
|
necomd |
|- ( ph -> ( M + 1 ) =/= K ) |
43 |
|
nelsn |
|- ( ( M + 1 ) =/= K -> -. ( M + 1 ) e. { K } ) |
44 |
42 43
|
syl |
|- ( ph -> -. ( M + 1 ) e. { K } ) |
45 |
36 44
|
eldifd |
|- ( ph -> ( M + 1 ) e. ( ( 1 ... N ) \ { K } ) ) |
46 |
20 45
|
jca |
|- ( ph -> ( M e. ( K ... N ) /\ ( M + 1 ) e. ( ( 1 ... N ) \ { K } ) ) ) |