| Step | Hyp | Ref | Expression | 
						
							| 1 |  | submateqlem1.n |  |-  ( ph -> N e. NN ) | 
						
							| 2 |  | submateqlem1.k |  |-  ( ph -> K e. ( 1 ... N ) ) | 
						
							| 3 |  | submateqlem1.m |  |-  ( ph -> M e. ( 1 ... ( N - 1 ) ) ) | 
						
							| 4 |  | submateqlem1.1 |  |-  ( ph -> K <_ M ) | 
						
							| 5 |  | fz1ssnn |  |-  ( 1 ... N ) C_ NN | 
						
							| 6 | 5 2 | sselid |  |-  ( ph -> K e. NN ) | 
						
							| 7 | 6 | nnzd |  |-  ( ph -> K e. ZZ ) | 
						
							| 8 | 1 | nnzd |  |-  ( ph -> N e. ZZ ) | 
						
							| 9 |  | fz1ssnn |  |-  ( 1 ... ( N - 1 ) ) C_ NN | 
						
							| 10 | 9 3 | sselid |  |-  ( ph -> M e. NN ) | 
						
							| 11 | 10 | nnzd |  |-  ( ph -> M e. ZZ ) | 
						
							| 12 | 10 | nnred |  |-  ( ph -> M e. RR ) | 
						
							| 13 | 1 | nnred |  |-  ( ph -> N e. RR ) | 
						
							| 14 |  | 1red |  |-  ( ph -> 1 e. RR ) | 
						
							| 15 | 13 14 | resubcld |  |-  ( ph -> ( N - 1 ) e. RR ) | 
						
							| 16 |  | elfzle2 |  |-  ( M e. ( 1 ... ( N - 1 ) ) -> M <_ ( N - 1 ) ) | 
						
							| 17 | 3 16 | syl |  |-  ( ph -> M <_ ( N - 1 ) ) | 
						
							| 18 | 13 | lem1d |  |-  ( ph -> ( N - 1 ) <_ N ) | 
						
							| 19 | 12 15 13 17 18 | letrd |  |-  ( ph -> M <_ N ) | 
						
							| 20 | 7 8 11 4 19 | elfzd |  |-  ( ph -> M e. ( K ... N ) ) | 
						
							| 21 |  | 1zzd |  |-  ( ph -> 1 e. ZZ ) | 
						
							| 22 | 11 | peano2zd |  |-  ( ph -> ( M + 1 ) e. ZZ ) | 
						
							| 23 | 10 | nnnn0d |  |-  ( ph -> M e. NN0 ) | 
						
							| 24 | 23 | nn0ge0d |  |-  ( ph -> 0 <_ M ) | 
						
							| 25 |  | 1re |  |-  1 e. RR | 
						
							| 26 |  | addge02 |  |-  ( ( 1 e. RR /\ M e. RR ) -> ( 0 <_ M <-> 1 <_ ( M + 1 ) ) ) | 
						
							| 27 | 25 12 26 | sylancr |  |-  ( ph -> ( 0 <_ M <-> 1 <_ ( M + 1 ) ) ) | 
						
							| 28 | 24 27 | mpbid |  |-  ( ph -> 1 <_ ( M + 1 ) ) | 
						
							| 29 | 1 | nnnn0d |  |-  ( ph -> N e. NN0 ) | 
						
							| 30 |  | nn0ltlem1 |  |-  ( ( M e. NN0 /\ N e. NN0 ) -> ( M < N <-> M <_ ( N - 1 ) ) ) | 
						
							| 31 | 23 29 30 | syl2anc |  |-  ( ph -> ( M < N <-> M <_ ( N - 1 ) ) ) | 
						
							| 32 | 17 31 | mpbird |  |-  ( ph -> M < N ) | 
						
							| 33 |  | nnltp1le |  |-  ( ( M e. NN /\ N e. NN ) -> ( M < N <-> ( M + 1 ) <_ N ) ) | 
						
							| 34 | 10 1 33 | syl2anc |  |-  ( ph -> ( M < N <-> ( M + 1 ) <_ N ) ) | 
						
							| 35 | 32 34 | mpbid |  |-  ( ph -> ( M + 1 ) <_ N ) | 
						
							| 36 | 21 8 22 28 35 | elfzd |  |-  ( ph -> ( M + 1 ) e. ( 1 ... N ) ) | 
						
							| 37 | 6 | nnred |  |-  ( ph -> K e. RR ) | 
						
							| 38 |  | nnleltp1 |  |-  ( ( K e. NN /\ M e. NN ) -> ( K <_ M <-> K < ( M + 1 ) ) ) | 
						
							| 39 | 6 10 38 | syl2anc |  |-  ( ph -> ( K <_ M <-> K < ( M + 1 ) ) ) | 
						
							| 40 | 4 39 | mpbid |  |-  ( ph -> K < ( M + 1 ) ) | 
						
							| 41 | 37 40 | ltned |  |-  ( ph -> K =/= ( M + 1 ) ) | 
						
							| 42 | 41 | necomd |  |-  ( ph -> ( M + 1 ) =/= K ) | 
						
							| 43 |  | nelsn |  |-  ( ( M + 1 ) =/= K -> -. ( M + 1 ) e. { K } ) | 
						
							| 44 | 42 43 | syl |  |-  ( ph -> -. ( M + 1 ) e. { K } ) | 
						
							| 45 | 36 44 | eldifd |  |-  ( ph -> ( M + 1 ) e. ( ( 1 ... N ) \ { K } ) ) | 
						
							| 46 | 20 45 | jca |  |-  ( ph -> ( M e. ( K ... N ) /\ ( M + 1 ) e. ( ( 1 ... N ) \ { K } ) ) ) |