Step |
Hyp |
Ref |
Expression |
1 |
|
mdetpmtr.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
2 |
|
mdetpmtr.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
3 |
|
mdetpmtr.d |
⊢ 𝐷 = ( 𝑁 maDet 𝑅 ) |
4 |
|
mdetpmtr.g |
⊢ 𝐺 = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) |
5 |
|
mdetpmtr.s |
⊢ 𝑆 = ( pmSgn ‘ 𝑁 ) |
6 |
|
mdetpmtr.z |
⊢ 𝑍 = ( ℤRHom ‘ 𝑅 ) |
7 |
|
mdetpmtr.t |
⊢ · = ( .r ‘ 𝑅 ) |
8 |
|
mdetpmtr12.e |
⊢ 𝐸 = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( 𝑃 ‘ 𝑖 ) 𝑀 ( 𝑄 ‘ 𝑗 ) ) ) |
9 |
|
mdetmptr12.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
10 |
|
mdetmptr12.n |
⊢ ( 𝜑 → 𝑁 ∈ Fin ) |
11 |
|
mdetmptr12.m |
⊢ ( 𝜑 → 𝑀 ∈ 𝐵 ) |
12 |
|
mdetmptr12.p |
⊢ ( 𝜑 → 𝑃 ∈ 𝐺 ) |
13 |
|
mdetmptr12.q |
⊢ ( 𝜑 → 𝑄 ∈ 𝐺 ) |
14 |
|
fveq2 |
⊢ ( 𝑘 = 𝑖 → ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ 𝑖 ) ) |
15 |
14
|
oveq1d |
⊢ ( 𝑘 = 𝑖 → ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑙 ) = ( ( 𝑃 ‘ 𝑖 ) 𝑀 𝑙 ) ) |
16 |
|
oveq2 |
⊢ ( 𝑙 = 𝑗 → ( ( 𝑃 ‘ 𝑖 ) 𝑀 𝑙 ) = ( ( 𝑃 ‘ 𝑖 ) 𝑀 𝑗 ) ) |
17 |
15 16
|
cbvmpov |
⊢ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑙 ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( 𝑃 ‘ 𝑖 ) 𝑀 𝑗 ) ) |
18 |
1 2 3 4 5 6 7 17
|
mdetpmtr1 |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ ( 𝑀 ∈ 𝐵 ∧ 𝑃 ∈ 𝐺 ) ) → ( 𝐷 ‘ 𝑀 ) = ( ( ( 𝑍 ∘ 𝑆 ) ‘ 𝑃 ) · ( 𝐷 ‘ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑙 ) ) ) ) ) |
19 |
9 10 11 12 18
|
syl22anc |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝑀 ) = ( ( ( 𝑍 ∘ 𝑆 ) ‘ 𝑃 ) · ( 𝐷 ‘ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑙 ) ) ) ) ) |
20 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
21 |
12
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) → 𝑃 ∈ 𝐺 ) |
22 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) → 𝑘 ∈ 𝑁 ) |
23 |
|
eqid |
⊢ ( SymGrp ‘ 𝑁 ) = ( SymGrp ‘ 𝑁 ) |
24 |
23 4
|
symgfv |
⊢ ( ( 𝑃 ∈ 𝐺 ∧ 𝑘 ∈ 𝑁 ) → ( 𝑃 ‘ 𝑘 ) ∈ 𝑁 ) |
25 |
21 22 24
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) → ( 𝑃 ‘ 𝑘 ) ∈ 𝑁 ) |
26 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) → 𝑙 ∈ 𝑁 ) |
27 |
11
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) → 𝑀 ∈ 𝐵 ) |
28 |
1 20 2 25 26 27
|
matecld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) → ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑙 ) ∈ ( Base ‘ 𝑅 ) ) |
29 |
1 20 2 10 9 28
|
matbas2d |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑙 ) ) ∈ 𝐵 ) |
30 |
|
eqid |
⊢ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑖 ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑙 ) ) ( 𝑄 ‘ 𝑗 ) ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑖 ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑙 ) ) ( 𝑄 ‘ 𝑗 ) ) ) |
31 |
1 2 3 4 5 6 7 30
|
mdetpmtr2 |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ ( ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑙 ) ) ∈ 𝐵 ∧ 𝑄 ∈ 𝐺 ) ) → ( 𝐷 ‘ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑙 ) ) ) = ( ( ( 𝑍 ∘ 𝑆 ) ‘ 𝑄 ) · ( 𝐷 ‘ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑖 ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑙 ) ) ( 𝑄 ‘ 𝑗 ) ) ) ) ) ) |
32 |
9 10 29 13 31
|
syl22anc |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑙 ) ) ) = ( ( ( 𝑍 ∘ 𝑆 ) ‘ 𝑄 ) · ( 𝐷 ‘ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑖 ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑙 ) ) ( 𝑄 ‘ 𝑗 ) ) ) ) ) ) |
33 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑖 ∈ 𝑁 ) |
34 |
13
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑄 ∈ 𝐺 ) |
35 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑗 ∈ 𝑁 ) |
36 |
23 4
|
symgfv |
⊢ ( ( 𝑄 ∈ 𝐺 ∧ 𝑗 ∈ 𝑁 ) → ( 𝑄 ‘ 𝑗 ) ∈ 𝑁 ) |
37 |
34 35 36
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( 𝑄 ‘ 𝑗 ) ∈ 𝑁 ) |
38 |
|
oveq2 |
⊢ ( 𝑙 = ( 𝑄 ‘ 𝑗 ) → ( ( 𝑃 ‘ 𝑖 ) 𝑀 𝑙 ) = ( ( 𝑃 ‘ 𝑖 ) 𝑀 ( 𝑄 ‘ 𝑗 ) ) ) |
39 |
|
eqid |
⊢ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑙 ) ) = ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑙 ) ) |
40 |
|
ovex |
⊢ ( ( 𝑃 ‘ 𝑖 ) 𝑀 ( 𝑄 ‘ 𝑗 ) ) ∈ V |
41 |
15 38 39 40
|
ovmpo |
⊢ ( ( 𝑖 ∈ 𝑁 ∧ ( 𝑄 ‘ 𝑗 ) ∈ 𝑁 ) → ( 𝑖 ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑙 ) ) ( 𝑄 ‘ 𝑗 ) ) = ( ( 𝑃 ‘ 𝑖 ) 𝑀 ( 𝑄 ‘ 𝑗 ) ) ) |
42 |
33 37 41
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( 𝑖 ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑙 ) ) ( 𝑄 ‘ 𝑗 ) ) = ( ( 𝑃 ‘ 𝑖 ) 𝑀 ( 𝑄 ‘ 𝑗 ) ) ) |
43 |
42
|
mpoeq3dva |
⊢ ( 𝜑 → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑖 ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑙 ) ) ( 𝑄 ‘ 𝑗 ) ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( 𝑃 ‘ 𝑖 ) 𝑀 ( 𝑄 ‘ 𝑗 ) ) ) ) |
44 |
8 43
|
eqtr4id |
⊢ ( 𝜑 → 𝐸 = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑖 ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑙 ) ) ( 𝑄 ‘ 𝑗 ) ) ) ) |
45 |
44
|
fveq2d |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐸 ) = ( 𝐷 ‘ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑖 ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑙 ) ) ( 𝑄 ‘ 𝑗 ) ) ) ) ) |
46 |
45
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 𝑍 ∘ 𝑆 ) ‘ 𝑄 ) · ( 𝐷 ‘ 𝐸 ) ) = ( ( ( 𝑍 ∘ 𝑆 ) ‘ 𝑄 ) · ( 𝐷 ‘ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑖 ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑙 ) ) ( 𝑄 ‘ 𝑗 ) ) ) ) ) ) |
47 |
32 46
|
eqtr4d |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑙 ) ) ) = ( ( ( 𝑍 ∘ 𝑆 ) ‘ 𝑄 ) · ( 𝐷 ‘ 𝐸 ) ) ) |
48 |
47
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 𝑍 ∘ 𝑆 ) ‘ 𝑃 ) · ( 𝐷 ‘ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑙 ) ) ) ) = ( ( ( 𝑍 ∘ 𝑆 ) ‘ 𝑃 ) · ( ( ( 𝑍 ∘ 𝑆 ) ‘ 𝑄 ) · ( 𝐷 ‘ 𝐸 ) ) ) ) |
49 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
50 |
9 49
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
51 |
4 5 6
|
zrhcopsgnelbas |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ 𝐺 ) → ( ( 𝑍 ∘ 𝑆 ) ‘ 𝑃 ) ∈ ( Base ‘ 𝑅 ) ) |
52 |
50 10 12 51
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑍 ∘ 𝑆 ) ‘ 𝑃 ) ∈ ( Base ‘ 𝑅 ) ) |
53 |
4 5 6
|
zrhcopsgnelbas |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝐺 ) → ( ( 𝑍 ∘ 𝑆 ) ‘ 𝑄 ) ∈ ( Base ‘ 𝑅 ) ) |
54 |
50 10 13 53
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑍 ∘ 𝑆 ) ‘ 𝑄 ) ∈ ( Base ‘ 𝑅 ) ) |
55 |
12
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑃 ∈ 𝐺 ) |
56 |
23 4
|
symgfv |
⊢ ( ( 𝑃 ∈ 𝐺 ∧ 𝑖 ∈ 𝑁 ) → ( 𝑃 ‘ 𝑖 ) ∈ 𝑁 ) |
57 |
55 33 56
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( 𝑃 ‘ 𝑖 ) ∈ 𝑁 ) |
58 |
11
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑀 ∈ 𝐵 ) |
59 |
1 20 2 57 37 58
|
matecld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( ( 𝑃 ‘ 𝑖 ) 𝑀 ( 𝑄 ‘ 𝑗 ) ) ∈ ( Base ‘ 𝑅 ) ) |
60 |
1 20 2 10 9 59
|
matbas2d |
⊢ ( 𝜑 → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( 𝑃 ‘ 𝑖 ) 𝑀 ( 𝑄 ‘ 𝑗 ) ) ) ∈ 𝐵 ) |
61 |
8 60
|
eqeltrid |
⊢ ( 𝜑 → 𝐸 ∈ 𝐵 ) |
62 |
3 1 2 20
|
mdetcl |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝐸 ∈ 𝐵 ) → ( 𝐷 ‘ 𝐸 ) ∈ ( Base ‘ 𝑅 ) ) |
63 |
9 61 62
|
syl2anc |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐸 ) ∈ ( Base ‘ 𝑅 ) ) |
64 |
20 7
|
ringass |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ( ( 𝑍 ∘ 𝑆 ) ‘ 𝑃 ) ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝑍 ∘ 𝑆 ) ‘ 𝑄 ) ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐷 ‘ 𝐸 ) ∈ ( Base ‘ 𝑅 ) ) ) → ( ( ( ( 𝑍 ∘ 𝑆 ) ‘ 𝑃 ) · ( ( 𝑍 ∘ 𝑆 ) ‘ 𝑄 ) ) · ( 𝐷 ‘ 𝐸 ) ) = ( ( ( 𝑍 ∘ 𝑆 ) ‘ 𝑃 ) · ( ( ( 𝑍 ∘ 𝑆 ) ‘ 𝑄 ) · ( 𝐷 ‘ 𝐸 ) ) ) ) |
65 |
50 52 54 63 64
|
syl13anc |
⊢ ( 𝜑 → ( ( ( ( 𝑍 ∘ 𝑆 ) ‘ 𝑃 ) · ( ( 𝑍 ∘ 𝑆 ) ‘ 𝑄 ) ) · ( 𝐷 ‘ 𝐸 ) ) = ( ( ( 𝑍 ∘ 𝑆 ) ‘ 𝑃 ) · ( ( ( 𝑍 ∘ 𝑆 ) ‘ 𝑄 ) · ( 𝐷 ‘ 𝐸 ) ) ) ) |
66 |
4 5
|
cofipsgn |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑃 ∈ 𝐺 ) → ( ( 𝑍 ∘ 𝑆 ) ‘ 𝑃 ) = ( 𝑍 ‘ ( 𝑆 ‘ 𝑃 ) ) ) |
67 |
10 12 66
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑍 ∘ 𝑆 ) ‘ 𝑃 ) = ( 𝑍 ‘ ( 𝑆 ‘ 𝑃 ) ) ) |
68 |
4 5
|
cofipsgn |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝐺 ) → ( ( 𝑍 ∘ 𝑆 ) ‘ 𝑄 ) = ( 𝑍 ‘ ( 𝑆 ‘ 𝑄 ) ) ) |
69 |
10 13 68
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑍 ∘ 𝑆 ) ‘ 𝑄 ) = ( 𝑍 ‘ ( 𝑆 ‘ 𝑄 ) ) ) |
70 |
67 69
|
oveq12d |
⊢ ( 𝜑 → ( ( ( 𝑍 ∘ 𝑆 ) ‘ 𝑃 ) · ( ( 𝑍 ∘ 𝑆 ) ‘ 𝑄 ) ) = ( ( 𝑍 ‘ ( 𝑆 ‘ 𝑃 ) ) · ( 𝑍 ‘ ( 𝑆 ‘ 𝑄 ) ) ) ) |
71 |
6
|
zrhrhm |
⊢ ( 𝑅 ∈ Ring → 𝑍 ∈ ( ℤring RingHom 𝑅 ) ) |
72 |
50 71
|
syl |
⊢ ( 𝜑 → 𝑍 ∈ ( ℤring RingHom 𝑅 ) ) |
73 |
|
1z |
⊢ 1 ∈ ℤ |
74 |
|
neg1z |
⊢ - 1 ∈ ℤ |
75 |
|
prssi |
⊢ ( ( 1 ∈ ℤ ∧ - 1 ∈ ℤ ) → { 1 , - 1 } ⊆ ℤ ) |
76 |
73 74 75
|
mp2an |
⊢ { 1 , - 1 } ⊆ ℤ |
77 |
4 5
|
psgnran |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑃 ∈ 𝐺 ) → ( 𝑆 ‘ 𝑃 ) ∈ { 1 , - 1 } ) |
78 |
10 12 77
|
syl2anc |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝑃 ) ∈ { 1 , - 1 } ) |
79 |
76 78
|
sselid |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝑃 ) ∈ ℤ ) |
80 |
4 5
|
psgnran |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝐺 ) → ( 𝑆 ‘ 𝑄 ) ∈ { 1 , - 1 } ) |
81 |
10 13 80
|
syl2anc |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝑄 ) ∈ { 1 , - 1 } ) |
82 |
76 81
|
sselid |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝑄 ) ∈ ℤ ) |
83 |
|
zringbas |
⊢ ℤ = ( Base ‘ ℤring ) |
84 |
|
zringmulr |
⊢ · = ( .r ‘ ℤring ) |
85 |
83 84 7
|
rhmmul |
⊢ ( ( 𝑍 ∈ ( ℤring RingHom 𝑅 ) ∧ ( 𝑆 ‘ 𝑃 ) ∈ ℤ ∧ ( 𝑆 ‘ 𝑄 ) ∈ ℤ ) → ( 𝑍 ‘ ( ( 𝑆 ‘ 𝑃 ) · ( 𝑆 ‘ 𝑄 ) ) ) = ( ( 𝑍 ‘ ( 𝑆 ‘ 𝑃 ) ) · ( 𝑍 ‘ ( 𝑆 ‘ 𝑄 ) ) ) ) |
86 |
72 79 82 85
|
syl3anc |
⊢ ( 𝜑 → ( 𝑍 ‘ ( ( 𝑆 ‘ 𝑃 ) · ( 𝑆 ‘ 𝑄 ) ) ) = ( ( 𝑍 ‘ ( 𝑆 ‘ 𝑃 ) ) · ( 𝑍 ‘ ( 𝑆 ‘ 𝑄 ) ) ) ) |
87 |
70 86
|
eqtr4d |
⊢ ( 𝜑 → ( ( ( 𝑍 ∘ 𝑆 ) ‘ 𝑃 ) · ( ( 𝑍 ∘ 𝑆 ) ‘ 𝑄 ) ) = ( 𝑍 ‘ ( ( 𝑆 ‘ 𝑃 ) · ( 𝑆 ‘ 𝑄 ) ) ) ) |
88 |
87
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( 𝑍 ∘ 𝑆 ) ‘ 𝑃 ) · ( ( 𝑍 ∘ 𝑆 ) ‘ 𝑄 ) ) · ( 𝐷 ‘ 𝐸 ) ) = ( ( 𝑍 ‘ ( ( 𝑆 ‘ 𝑃 ) · ( 𝑆 ‘ 𝑄 ) ) ) · ( 𝐷 ‘ 𝐸 ) ) ) |
89 |
65 88
|
eqtr3d |
⊢ ( 𝜑 → ( ( ( 𝑍 ∘ 𝑆 ) ‘ 𝑃 ) · ( ( ( 𝑍 ∘ 𝑆 ) ‘ 𝑄 ) · ( 𝐷 ‘ 𝐸 ) ) ) = ( ( 𝑍 ‘ ( ( 𝑆 ‘ 𝑃 ) · ( 𝑆 ‘ 𝑄 ) ) ) · ( 𝐷 ‘ 𝐸 ) ) ) |
90 |
19 48 89
|
3eqtrd |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝑀 ) = ( ( 𝑍 ‘ ( ( 𝑆 ‘ 𝑃 ) · ( 𝑆 ‘ 𝑄 ) ) ) · ( 𝐷 ‘ 𝐸 ) ) ) |