| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mdetpmtr.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 2 |  | mdetpmtr.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 3 |  | mdetpmtr.d | ⊢ 𝐷  =  ( 𝑁  maDet  𝑅 ) | 
						
							| 4 |  | mdetpmtr.g | ⊢ 𝐺  =  ( Base ‘ ( SymGrp ‘ 𝑁 ) ) | 
						
							| 5 |  | mdetpmtr.s | ⊢ 𝑆  =  ( pmSgn ‘ 𝑁 ) | 
						
							| 6 |  | mdetpmtr.z | ⊢ 𝑍  =  ( ℤRHom ‘ 𝑅 ) | 
						
							| 7 |  | mdetpmtr.t | ⊢  ·   =  ( .r ‘ 𝑅 ) | 
						
							| 8 |  | mdetpmtr12.e | ⊢ 𝐸  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑃 ‘ 𝑖 ) 𝑀 ( 𝑄 ‘ 𝑗 ) ) ) | 
						
							| 9 |  | mdetmptr12.r | ⊢ ( 𝜑  →  𝑅  ∈  CRing ) | 
						
							| 10 |  | mdetmptr12.n | ⊢ ( 𝜑  →  𝑁  ∈  Fin ) | 
						
							| 11 |  | mdetmptr12.m | ⊢ ( 𝜑  →  𝑀  ∈  𝐵 ) | 
						
							| 12 |  | mdetmptr12.p | ⊢ ( 𝜑  →  𝑃  ∈  𝐺 ) | 
						
							| 13 |  | mdetmptr12.q | ⊢ ( 𝜑  →  𝑄  ∈  𝐺 ) | 
						
							| 14 |  | fveq2 | ⊢ ( 𝑘  =  𝑖  →  ( 𝑃 ‘ 𝑘 )  =  ( 𝑃 ‘ 𝑖 ) ) | 
						
							| 15 | 14 | oveq1d | ⊢ ( 𝑘  =  𝑖  →  ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑙 )  =  ( ( 𝑃 ‘ 𝑖 ) 𝑀 𝑙 ) ) | 
						
							| 16 |  | oveq2 | ⊢ ( 𝑙  =  𝑗  →  ( ( 𝑃 ‘ 𝑖 ) 𝑀 𝑙 )  =  ( ( 𝑃 ‘ 𝑖 ) 𝑀 𝑗 ) ) | 
						
							| 17 | 15 16 | cbvmpov | ⊢ ( 𝑘  ∈  𝑁 ,  𝑙  ∈  𝑁  ↦  ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑙 ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑃 ‘ 𝑖 ) 𝑀 𝑗 ) ) | 
						
							| 18 | 1 2 3 4 5 6 7 17 | mdetpmtr1 | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑁  ∈  Fin )  ∧  ( 𝑀  ∈  𝐵  ∧  𝑃  ∈  𝐺 ) )  →  ( 𝐷 ‘ 𝑀 )  =  ( ( ( 𝑍  ∘  𝑆 ) ‘ 𝑃 )  ·  ( 𝐷 ‘ ( 𝑘  ∈  𝑁 ,  𝑙  ∈  𝑁  ↦  ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑙 ) ) ) ) ) | 
						
							| 19 | 9 10 11 12 18 | syl22anc | ⊢ ( 𝜑  →  ( 𝐷 ‘ 𝑀 )  =  ( ( ( 𝑍  ∘  𝑆 ) ‘ 𝑃 )  ·  ( 𝐷 ‘ ( 𝑘  ∈  𝑁 ,  𝑙  ∈  𝑁  ↦  ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑙 ) ) ) ) ) | 
						
							| 20 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 21 | 12 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑁  ∧  𝑙  ∈  𝑁 )  →  𝑃  ∈  𝐺 ) | 
						
							| 22 |  | simp2 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑁  ∧  𝑙  ∈  𝑁 )  →  𝑘  ∈  𝑁 ) | 
						
							| 23 |  | eqid | ⊢ ( SymGrp ‘ 𝑁 )  =  ( SymGrp ‘ 𝑁 ) | 
						
							| 24 | 23 4 | symgfv | ⊢ ( ( 𝑃  ∈  𝐺  ∧  𝑘  ∈  𝑁 )  →  ( 𝑃 ‘ 𝑘 )  ∈  𝑁 ) | 
						
							| 25 | 21 22 24 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑁  ∧  𝑙  ∈  𝑁 )  →  ( 𝑃 ‘ 𝑘 )  ∈  𝑁 ) | 
						
							| 26 |  | simp3 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑁  ∧  𝑙  ∈  𝑁 )  →  𝑙  ∈  𝑁 ) | 
						
							| 27 | 11 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑁  ∧  𝑙  ∈  𝑁 )  →  𝑀  ∈  𝐵 ) | 
						
							| 28 | 1 20 2 25 26 27 | matecld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑁  ∧  𝑙  ∈  𝑁 )  →  ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑙 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 29 | 1 20 2 10 9 28 | matbas2d | ⊢ ( 𝜑  →  ( 𝑘  ∈  𝑁 ,  𝑙  ∈  𝑁  ↦  ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑙 ) )  ∈  𝐵 ) | 
						
							| 30 |  | eqid | ⊢ ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑖 ( 𝑘  ∈  𝑁 ,  𝑙  ∈  𝑁  ↦  ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑙 ) ) ( 𝑄 ‘ 𝑗 ) ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑖 ( 𝑘  ∈  𝑁 ,  𝑙  ∈  𝑁  ↦  ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑙 ) ) ( 𝑄 ‘ 𝑗 ) ) ) | 
						
							| 31 | 1 2 3 4 5 6 7 30 | mdetpmtr2 | ⊢ ( ( ( 𝑅  ∈  CRing  ∧  𝑁  ∈  Fin )  ∧  ( ( 𝑘  ∈  𝑁 ,  𝑙  ∈  𝑁  ↦  ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑙 ) )  ∈  𝐵  ∧  𝑄  ∈  𝐺 ) )  →  ( 𝐷 ‘ ( 𝑘  ∈  𝑁 ,  𝑙  ∈  𝑁  ↦  ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑙 ) ) )  =  ( ( ( 𝑍  ∘  𝑆 ) ‘ 𝑄 )  ·  ( 𝐷 ‘ ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑖 ( 𝑘  ∈  𝑁 ,  𝑙  ∈  𝑁  ↦  ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑙 ) ) ( 𝑄 ‘ 𝑗 ) ) ) ) ) ) | 
						
							| 32 | 9 10 29 13 31 | syl22anc | ⊢ ( 𝜑  →  ( 𝐷 ‘ ( 𝑘  ∈  𝑁 ,  𝑙  ∈  𝑁  ↦  ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑙 ) ) )  =  ( ( ( 𝑍  ∘  𝑆 ) ‘ 𝑄 )  ·  ( 𝐷 ‘ ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑖 ( 𝑘  ∈  𝑁 ,  𝑙  ∈  𝑁  ↦  ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑙 ) ) ( 𝑄 ‘ 𝑗 ) ) ) ) ) ) | 
						
							| 33 |  | simp2 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑖  ∈  𝑁 ) | 
						
							| 34 | 13 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑄  ∈  𝐺 ) | 
						
							| 35 |  | simp3 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑗  ∈  𝑁 ) | 
						
							| 36 | 23 4 | symgfv | ⊢ ( ( 𝑄  ∈  𝐺  ∧  𝑗  ∈  𝑁 )  →  ( 𝑄 ‘ 𝑗 )  ∈  𝑁 ) | 
						
							| 37 | 34 35 36 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( 𝑄 ‘ 𝑗 )  ∈  𝑁 ) | 
						
							| 38 |  | oveq2 | ⊢ ( 𝑙  =  ( 𝑄 ‘ 𝑗 )  →  ( ( 𝑃 ‘ 𝑖 ) 𝑀 𝑙 )  =  ( ( 𝑃 ‘ 𝑖 ) 𝑀 ( 𝑄 ‘ 𝑗 ) ) ) | 
						
							| 39 |  | eqid | ⊢ ( 𝑘  ∈  𝑁 ,  𝑙  ∈  𝑁  ↦  ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑙 ) )  =  ( 𝑘  ∈  𝑁 ,  𝑙  ∈  𝑁  ↦  ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑙 ) ) | 
						
							| 40 |  | ovex | ⊢ ( ( 𝑃 ‘ 𝑖 ) 𝑀 ( 𝑄 ‘ 𝑗 ) )  ∈  V | 
						
							| 41 | 15 38 39 40 | ovmpo | ⊢ ( ( 𝑖  ∈  𝑁  ∧  ( 𝑄 ‘ 𝑗 )  ∈  𝑁 )  →  ( 𝑖 ( 𝑘  ∈  𝑁 ,  𝑙  ∈  𝑁  ↦  ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑙 ) ) ( 𝑄 ‘ 𝑗 ) )  =  ( ( 𝑃 ‘ 𝑖 ) 𝑀 ( 𝑄 ‘ 𝑗 ) ) ) | 
						
							| 42 | 33 37 41 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( 𝑖 ( 𝑘  ∈  𝑁 ,  𝑙  ∈  𝑁  ↦  ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑙 ) ) ( 𝑄 ‘ 𝑗 ) )  =  ( ( 𝑃 ‘ 𝑖 ) 𝑀 ( 𝑄 ‘ 𝑗 ) ) ) | 
						
							| 43 | 42 | mpoeq3dva | ⊢ ( 𝜑  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑖 ( 𝑘  ∈  𝑁 ,  𝑙  ∈  𝑁  ↦  ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑙 ) ) ( 𝑄 ‘ 𝑗 ) ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑃 ‘ 𝑖 ) 𝑀 ( 𝑄 ‘ 𝑗 ) ) ) ) | 
						
							| 44 | 8 43 | eqtr4id | ⊢ ( 𝜑  →  𝐸  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑖 ( 𝑘  ∈  𝑁 ,  𝑙  ∈  𝑁  ↦  ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑙 ) ) ( 𝑄 ‘ 𝑗 ) ) ) ) | 
						
							| 45 | 44 | fveq2d | ⊢ ( 𝜑  →  ( 𝐷 ‘ 𝐸 )  =  ( 𝐷 ‘ ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑖 ( 𝑘  ∈  𝑁 ,  𝑙  ∈  𝑁  ↦  ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑙 ) ) ( 𝑄 ‘ 𝑗 ) ) ) ) ) | 
						
							| 46 | 45 | oveq2d | ⊢ ( 𝜑  →  ( ( ( 𝑍  ∘  𝑆 ) ‘ 𝑄 )  ·  ( 𝐷 ‘ 𝐸 ) )  =  ( ( ( 𝑍  ∘  𝑆 ) ‘ 𝑄 )  ·  ( 𝐷 ‘ ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑖 ( 𝑘  ∈  𝑁 ,  𝑙  ∈  𝑁  ↦  ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑙 ) ) ( 𝑄 ‘ 𝑗 ) ) ) ) ) ) | 
						
							| 47 | 32 46 | eqtr4d | ⊢ ( 𝜑  →  ( 𝐷 ‘ ( 𝑘  ∈  𝑁 ,  𝑙  ∈  𝑁  ↦  ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑙 ) ) )  =  ( ( ( 𝑍  ∘  𝑆 ) ‘ 𝑄 )  ·  ( 𝐷 ‘ 𝐸 ) ) ) | 
						
							| 48 | 47 | oveq2d | ⊢ ( 𝜑  →  ( ( ( 𝑍  ∘  𝑆 ) ‘ 𝑃 )  ·  ( 𝐷 ‘ ( 𝑘  ∈  𝑁 ,  𝑙  ∈  𝑁  ↦  ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑙 ) ) ) )  =  ( ( ( 𝑍  ∘  𝑆 ) ‘ 𝑃 )  ·  ( ( ( 𝑍  ∘  𝑆 ) ‘ 𝑄 )  ·  ( 𝐷 ‘ 𝐸 ) ) ) ) | 
						
							| 49 |  | crngring | ⊢ ( 𝑅  ∈  CRing  →  𝑅  ∈  Ring ) | 
						
							| 50 | 9 49 | syl | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 51 | 4 5 6 | zrhcopsgnelbas | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑁  ∈  Fin  ∧  𝑃  ∈  𝐺 )  →  ( ( 𝑍  ∘  𝑆 ) ‘ 𝑃 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 52 | 50 10 12 51 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝑍  ∘  𝑆 ) ‘ 𝑃 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 53 | 4 5 6 | zrhcopsgnelbas | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑁  ∈  Fin  ∧  𝑄  ∈  𝐺 )  →  ( ( 𝑍  ∘  𝑆 ) ‘ 𝑄 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 54 | 50 10 13 53 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝑍  ∘  𝑆 ) ‘ 𝑄 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 55 | 12 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑃  ∈  𝐺 ) | 
						
							| 56 | 23 4 | symgfv | ⊢ ( ( 𝑃  ∈  𝐺  ∧  𝑖  ∈  𝑁 )  →  ( 𝑃 ‘ 𝑖 )  ∈  𝑁 ) | 
						
							| 57 | 55 33 56 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( 𝑃 ‘ 𝑖 )  ∈  𝑁 ) | 
						
							| 58 | 11 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑀  ∈  𝐵 ) | 
						
							| 59 | 1 20 2 57 37 58 | matecld | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( ( 𝑃 ‘ 𝑖 ) 𝑀 ( 𝑄 ‘ 𝑗 ) )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 60 | 1 20 2 10 9 59 | matbas2d | ⊢ ( 𝜑  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑃 ‘ 𝑖 ) 𝑀 ( 𝑄 ‘ 𝑗 ) ) )  ∈  𝐵 ) | 
						
							| 61 | 8 60 | eqeltrid | ⊢ ( 𝜑  →  𝐸  ∈  𝐵 ) | 
						
							| 62 | 3 1 2 20 | mdetcl | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝐸  ∈  𝐵 )  →  ( 𝐷 ‘ 𝐸 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 63 | 9 61 62 | syl2anc | ⊢ ( 𝜑  →  ( 𝐷 ‘ 𝐸 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 64 | 20 7 | ringass | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( ( ( 𝑍  ∘  𝑆 ) ‘ 𝑃 )  ∈  ( Base ‘ 𝑅 )  ∧  ( ( 𝑍  ∘  𝑆 ) ‘ 𝑄 )  ∈  ( Base ‘ 𝑅 )  ∧  ( 𝐷 ‘ 𝐸 )  ∈  ( Base ‘ 𝑅 ) ) )  →  ( ( ( ( 𝑍  ∘  𝑆 ) ‘ 𝑃 )  ·  ( ( 𝑍  ∘  𝑆 ) ‘ 𝑄 ) )  ·  ( 𝐷 ‘ 𝐸 ) )  =  ( ( ( 𝑍  ∘  𝑆 ) ‘ 𝑃 )  ·  ( ( ( 𝑍  ∘  𝑆 ) ‘ 𝑄 )  ·  ( 𝐷 ‘ 𝐸 ) ) ) ) | 
						
							| 65 | 50 52 54 63 64 | syl13anc | ⊢ ( 𝜑  →  ( ( ( ( 𝑍  ∘  𝑆 ) ‘ 𝑃 )  ·  ( ( 𝑍  ∘  𝑆 ) ‘ 𝑄 ) )  ·  ( 𝐷 ‘ 𝐸 ) )  =  ( ( ( 𝑍  ∘  𝑆 ) ‘ 𝑃 )  ·  ( ( ( 𝑍  ∘  𝑆 ) ‘ 𝑄 )  ·  ( 𝐷 ‘ 𝐸 ) ) ) ) | 
						
							| 66 | 4 5 | cofipsgn | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑃  ∈  𝐺 )  →  ( ( 𝑍  ∘  𝑆 ) ‘ 𝑃 )  =  ( 𝑍 ‘ ( 𝑆 ‘ 𝑃 ) ) ) | 
						
							| 67 | 10 12 66 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝑍  ∘  𝑆 ) ‘ 𝑃 )  =  ( 𝑍 ‘ ( 𝑆 ‘ 𝑃 ) ) ) | 
						
							| 68 | 4 5 | cofipsgn | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑄  ∈  𝐺 )  →  ( ( 𝑍  ∘  𝑆 ) ‘ 𝑄 )  =  ( 𝑍 ‘ ( 𝑆 ‘ 𝑄 ) ) ) | 
						
							| 69 | 10 13 68 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝑍  ∘  𝑆 ) ‘ 𝑄 )  =  ( 𝑍 ‘ ( 𝑆 ‘ 𝑄 ) ) ) | 
						
							| 70 | 67 69 | oveq12d | ⊢ ( 𝜑  →  ( ( ( 𝑍  ∘  𝑆 ) ‘ 𝑃 )  ·  ( ( 𝑍  ∘  𝑆 ) ‘ 𝑄 ) )  =  ( ( 𝑍 ‘ ( 𝑆 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ ( 𝑆 ‘ 𝑄 ) ) ) ) | 
						
							| 71 | 6 | zrhrhm | ⊢ ( 𝑅  ∈  Ring  →  𝑍  ∈  ( ℤring  RingHom  𝑅 ) ) | 
						
							| 72 | 50 71 | syl | ⊢ ( 𝜑  →  𝑍  ∈  ( ℤring  RingHom  𝑅 ) ) | 
						
							| 73 |  | 1z | ⊢ 1  ∈  ℤ | 
						
							| 74 |  | neg1z | ⊢ - 1  ∈  ℤ | 
						
							| 75 |  | prssi | ⊢ ( ( 1  ∈  ℤ  ∧  - 1  ∈  ℤ )  →  { 1 ,  - 1 }  ⊆  ℤ ) | 
						
							| 76 | 73 74 75 | mp2an | ⊢ { 1 ,  - 1 }  ⊆  ℤ | 
						
							| 77 | 4 5 | psgnran | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑃  ∈  𝐺 )  →  ( 𝑆 ‘ 𝑃 )  ∈  { 1 ,  - 1 } ) | 
						
							| 78 | 10 12 77 | syl2anc | ⊢ ( 𝜑  →  ( 𝑆 ‘ 𝑃 )  ∈  { 1 ,  - 1 } ) | 
						
							| 79 | 76 78 | sselid | ⊢ ( 𝜑  →  ( 𝑆 ‘ 𝑃 )  ∈  ℤ ) | 
						
							| 80 | 4 5 | psgnran | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑄  ∈  𝐺 )  →  ( 𝑆 ‘ 𝑄 )  ∈  { 1 ,  - 1 } ) | 
						
							| 81 | 10 13 80 | syl2anc | ⊢ ( 𝜑  →  ( 𝑆 ‘ 𝑄 )  ∈  { 1 ,  - 1 } ) | 
						
							| 82 | 76 81 | sselid | ⊢ ( 𝜑  →  ( 𝑆 ‘ 𝑄 )  ∈  ℤ ) | 
						
							| 83 |  | zringbas | ⊢ ℤ  =  ( Base ‘ ℤring ) | 
						
							| 84 |  | zringmulr | ⊢  ·   =  ( .r ‘ ℤring ) | 
						
							| 85 | 83 84 7 | rhmmul | ⊢ ( ( 𝑍  ∈  ( ℤring  RingHom  𝑅 )  ∧  ( 𝑆 ‘ 𝑃 )  ∈  ℤ  ∧  ( 𝑆 ‘ 𝑄 )  ∈  ℤ )  →  ( 𝑍 ‘ ( ( 𝑆 ‘ 𝑃 )  ·  ( 𝑆 ‘ 𝑄 ) ) )  =  ( ( 𝑍 ‘ ( 𝑆 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ ( 𝑆 ‘ 𝑄 ) ) ) ) | 
						
							| 86 | 72 79 82 85 | syl3anc | ⊢ ( 𝜑  →  ( 𝑍 ‘ ( ( 𝑆 ‘ 𝑃 )  ·  ( 𝑆 ‘ 𝑄 ) ) )  =  ( ( 𝑍 ‘ ( 𝑆 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ ( 𝑆 ‘ 𝑄 ) ) ) ) | 
						
							| 87 | 70 86 | eqtr4d | ⊢ ( 𝜑  →  ( ( ( 𝑍  ∘  𝑆 ) ‘ 𝑃 )  ·  ( ( 𝑍  ∘  𝑆 ) ‘ 𝑄 ) )  =  ( 𝑍 ‘ ( ( 𝑆 ‘ 𝑃 )  ·  ( 𝑆 ‘ 𝑄 ) ) ) ) | 
						
							| 88 | 87 | oveq1d | ⊢ ( 𝜑  →  ( ( ( ( 𝑍  ∘  𝑆 ) ‘ 𝑃 )  ·  ( ( 𝑍  ∘  𝑆 ) ‘ 𝑄 ) )  ·  ( 𝐷 ‘ 𝐸 ) )  =  ( ( 𝑍 ‘ ( ( 𝑆 ‘ 𝑃 )  ·  ( 𝑆 ‘ 𝑄 ) ) )  ·  ( 𝐷 ‘ 𝐸 ) ) ) | 
						
							| 89 | 65 88 | eqtr3d | ⊢ ( 𝜑  →  ( ( ( 𝑍  ∘  𝑆 ) ‘ 𝑃 )  ·  ( ( ( 𝑍  ∘  𝑆 ) ‘ 𝑄 )  ·  ( 𝐷 ‘ 𝐸 ) ) )  =  ( ( 𝑍 ‘ ( ( 𝑆 ‘ 𝑃 )  ·  ( 𝑆 ‘ 𝑄 ) ) )  ·  ( 𝐷 ‘ 𝐸 ) ) ) | 
						
							| 90 | 19 48 89 | 3eqtrd | ⊢ ( 𝜑  →  ( 𝐷 ‘ 𝑀 )  =  ( ( 𝑍 ‘ ( ( 𝑆 ‘ 𝑃 )  ·  ( 𝑆 ‘ 𝑄 ) ) )  ·  ( 𝐷 ‘ 𝐸 ) ) ) |