| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mdetpmtr.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
| 2 |
|
mdetpmtr.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
| 3 |
|
mdetpmtr.d |
⊢ 𝐷 = ( 𝑁 maDet 𝑅 ) |
| 4 |
|
mdetpmtr.g |
⊢ 𝐺 = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) |
| 5 |
|
mdetpmtr.s |
⊢ 𝑆 = ( pmSgn ‘ 𝑁 ) |
| 6 |
|
mdetpmtr.z |
⊢ 𝑍 = ( ℤRHom ‘ 𝑅 ) |
| 7 |
|
mdetpmtr.t |
⊢ · = ( .r ‘ 𝑅 ) |
| 8 |
|
mdetpmtr12.e |
⊢ 𝐸 = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( 𝑃 ‘ 𝑖 ) 𝑀 ( 𝑄 ‘ 𝑗 ) ) ) |
| 9 |
|
mdetmptr12.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
| 10 |
|
mdetmptr12.n |
⊢ ( 𝜑 → 𝑁 ∈ Fin ) |
| 11 |
|
mdetmptr12.m |
⊢ ( 𝜑 → 𝑀 ∈ 𝐵 ) |
| 12 |
|
mdetmptr12.p |
⊢ ( 𝜑 → 𝑃 ∈ 𝐺 ) |
| 13 |
|
mdetmptr12.q |
⊢ ( 𝜑 → 𝑄 ∈ 𝐺 ) |
| 14 |
|
fveq2 |
⊢ ( 𝑘 = 𝑖 → ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ 𝑖 ) ) |
| 15 |
14
|
oveq1d |
⊢ ( 𝑘 = 𝑖 → ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑙 ) = ( ( 𝑃 ‘ 𝑖 ) 𝑀 𝑙 ) ) |
| 16 |
|
oveq2 |
⊢ ( 𝑙 = 𝑗 → ( ( 𝑃 ‘ 𝑖 ) 𝑀 𝑙 ) = ( ( 𝑃 ‘ 𝑖 ) 𝑀 𝑗 ) ) |
| 17 |
15 16
|
cbvmpov |
⊢ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑙 ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( 𝑃 ‘ 𝑖 ) 𝑀 𝑗 ) ) |
| 18 |
1 2 3 4 5 6 7 17
|
mdetpmtr1 |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ ( 𝑀 ∈ 𝐵 ∧ 𝑃 ∈ 𝐺 ) ) → ( 𝐷 ‘ 𝑀 ) = ( ( ( 𝑍 ∘ 𝑆 ) ‘ 𝑃 ) · ( 𝐷 ‘ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑙 ) ) ) ) ) |
| 19 |
9 10 11 12 18
|
syl22anc |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝑀 ) = ( ( ( 𝑍 ∘ 𝑆 ) ‘ 𝑃 ) · ( 𝐷 ‘ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑙 ) ) ) ) ) |
| 20 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 21 |
12
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) → 𝑃 ∈ 𝐺 ) |
| 22 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) → 𝑘 ∈ 𝑁 ) |
| 23 |
|
eqid |
⊢ ( SymGrp ‘ 𝑁 ) = ( SymGrp ‘ 𝑁 ) |
| 24 |
23 4
|
symgfv |
⊢ ( ( 𝑃 ∈ 𝐺 ∧ 𝑘 ∈ 𝑁 ) → ( 𝑃 ‘ 𝑘 ) ∈ 𝑁 ) |
| 25 |
21 22 24
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) → ( 𝑃 ‘ 𝑘 ) ∈ 𝑁 ) |
| 26 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) → 𝑙 ∈ 𝑁 ) |
| 27 |
11
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) → 𝑀 ∈ 𝐵 ) |
| 28 |
1 20 2 25 26 27
|
matecld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) → ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑙 ) ∈ ( Base ‘ 𝑅 ) ) |
| 29 |
1 20 2 10 9 28
|
matbas2d |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑙 ) ) ∈ 𝐵 ) |
| 30 |
|
eqid |
⊢ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑖 ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑙 ) ) ( 𝑄 ‘ 𝑗 ) ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑖 ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑙 ) ) ( 𝑄 ‘ 𝑗 ) ) ) |
| 31 |
1 2 3 4 5 6 7 30
|
mdetpmtr2 |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ ( ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑙 ) ) ∈ 𝐵 ∧ 𝑄 ∈ 𝐺 ) ) → ( 𝐷 ‘ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑙 ) ) ) = ( ( ( 𝑍 ∘ 𝑆 ) ‘ 𝑄 ) · ( 𝐷 ‘ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑖 ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑙 ) ) ( 𝑄 ‘ 𝑗 ) ) ) ) ) ) |
| 32 |
9 10 29 13 31
|
syl22anc |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑙 ) ) ) = ( ( ( 𝑍 ∘ 𝑆 ) ‘ 𝑄 ) · ( 𝐷 ‘ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑖 ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑙 ) ) ( 𝑄 ‘ 𝑗 ) ) ) ) ) ) |
| 33 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑖 ∈ 𝑁 ) |
| 34 |
13
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑄 ∈ 𝐺 ) |
| 35 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑗 ∈ 𝑁 ) |
| 36 |
23 4
|
symgfv |
⊢ ( ( 𝑄 ∈ 𝐺 ∧ 𝑗 ∈ 𝑁 ) → ( 𝑄 ‘ 𝑗 ) ∈ 𝑁 ) |
| 37 |
34 35 36
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( 𝑄 ‘ 𝑗 ) ∈ 𝑁 ) |
| 38 |
|
oveq2 |
⊢ ( 𝑙 = ( 𝑄 ‘ 𝑗 ) → ( ( 𝑃 ‘ 𝑖 ) 𝑀 𝑙 ) = ( ( 𝑃 ‘ 𝑖 ) 𝑀 ( 𝑄 ‘ 𝑗 ) ) ) |
| 39 |
|
eqid |
⊢ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑙 ) ) = ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑙 ) ) |
| 40 |
|
ovex |
⊢ ( ( 𝑃 ‘ 𝑖 ) 𝑀 ( 𝑄 ‘ 𝑗 ) ) ∈ V |
| 41 |
15 38 39 40
|
ovmpo |
⊢ ( ( 𝑖 ∈ 𝑁 ∧ ( 𝑄 ‘ 𝑗 ) ∈ 𝑁 ) → ( 𝑖 ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑙 ) ) ( 𝑄 ‘ 𝑗 ) ) = ( ( 𝑃 ‘ 𝑖 ) 𝑀 ( 𝑄 ‘ 𝑗 ) ) ) |
| 42 |
33 37 41
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( 𝑖 ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑙 ) ) ( 𝑄 ‘ 𝑗 ) ) = ( ( 𝑃 ‘ 𝑖 ) 𝑀 ( 𝑄 ‘ 𝑗 ) ) ) |
| 43 |
42
|
mpoeq3dva |
⊢ ( 𝜑 → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑖 ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑙 ) ) ( 𝑄 ‘ 𝑗 ) ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( 𝑃 ‘ 𝑖 ) 𝑀 ( 𝑄 ‘ 𝑗 ) ) ) ) |
| 44 |
8 43
|
eqtr4id |
⊢ ( 𝜑 → 𝐸 = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑖 ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑙 ) ) ( 𝑄 ‘ 𝑗 ) ) ) ) |
| 45 |
44
|
fveq2d |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐸 ) = ( 𝐷 ‘ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑖 ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑙 ) ) ( 𝑄 ‘ 𝑗 ) ) ) ) ) |
| 46 |
45
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 𝑍 ∘ 𝑆 ) ‘ 𝑄 ) · ( 𝐷 ‘ 𝐸 ) ) = ( ( ( 𝑍 ∘ 𝑆 ) ‘ 𝑄 ) · ( 𝐷 ‘ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑖 ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑙 ) ) ( 𝑄 ‘ 𝑗 ) ) ) ) ) ) |
| 47 |
32 46
|
eqtr4d |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑙 ) ) ) = ( ( ( 𝑍 ∘ 𝑆 ) ‘ 𝑄 ) · ( 𝐷 ‘ 𝐸 ) ) ) |
| 48 |
47
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 𝑍 ∘ 𝑆 ) ‘ 𝑃 ) · ( 𝐷 ‘ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑙 ) ) ) ) = ( ( ( 𝑍 ∘ 𝑆 ) ‘ 𝑃 ) · ( ( ( 𝑍 ∘ 𝑆 ) ‘ 𝑄 ) · ( 𝐷 ‘ 𝐸 ) ) ) ) |
| 49 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
| 50 |
9 49
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 51 |
4 5 6
|
zrhcopsgnelbas |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ 𝐺 ) → ( ( 𝑍 ∘ 𝑆 ) ‘ 𝑃 ) ∈ ( Base ‘ 𝑅 ) ) |
| 52 |
50 10 12 51
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑍 ∘ 𝑆 ) ‘ 𝑃 ) ∈ ( Base ‘ 𝑅 ) ) |
| 53 |
4 5 6
|
zrhcopsgnelbas |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝐺 ) → ( ( 𝑍 ∘ 𝑆 ) ‘ 𝑄 ) ∈ ( Base ‘ 𝑅 ) ) |
| 54 |
50 10 13 53
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑍 ∘ 𝑆 ) ‘ 𝑄 ) ∈ ( Base ‘ 𝑅 ) ) |
| 55 |
12
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑃 ∈ 𝐺 ) |
| 56 |
23 4
|
symgfv |
⊢ ( ( 𝑃 ∈ 𝐺 ∧ 𝑖 ∈ 𝑁 ) → ( 𝑃 ‘ 𝑖 ) ∈ 𝑁 ) |
| 57 |
55 33 56
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( 𝑃 ‘ 𝑖 ) ∈ 𝑁 ) |
| 58 |
11
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑀 ∈ 𝐵 ) |
| 59 |
1 20 2 57 37 58
|
matecld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( ( 𝑃 ‘ 𝑖 ) 𝑀 ( 𝑄 ‘ 𝑗 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 60 |
1 20 2 10 9 59
|
matbas2d |
⊢ ( 𝜑 → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( 𝑃 ‘ 𝑖 ) 𝑀 ( 𝑄 ‘ 𝑗 ) ) ) ∈ 𝐵 ) |
| 61 |
8 60
|
eqeltrid |
⊢ ( 𝜑 → 𝐸 ∈ 𝐵 ) |
| 62 |
3 1 2 20
|
mdetcl |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝐸 ∈ 𝐵 ) → ( 𝐷 ‘ 𝐸 ) ∈ ( Base ‘ 𝑅 ) ) |
| 63 |
9 61 62
|
syl2anc |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐸 ) ∈ ( Base ‘ 𝑅 ) ) |
| 64 |
20 7
|
ringass |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ( ( 𝑍 ∘ 𝑆 ) ‘ 𝑃 ) ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝑍 ∘ 𝑆 ) ‘ 𝑄 ) ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐷 ‘ 𝐸 ) ∈ ( Base ‘ 𝑅 ) ) ) → ( ( ( ( 𝑍 ∘ 𝑆 ) ‘ 𝑃 ) · ( ( 𝑍 ∘ 𝑆 ) ‘ 𝑄 ) ) · ( 𝐷 ‘ 𝐸 ) ) = ( ( ( 𝑍 ∘ 𝑆 ) ‘ 𝑃 ) · ( ( ( 𝑍 ∘ 𝑆 ) ‘ 𝑄 ) · ( 𝐷 ‘ 𝐸 ) ) ) ) |
| 65 |
50 52 54 63 64
|
syl13anc |
⊢ ( 𝜑 → ( ( ( ( 𝑍 ∘ 𝑆 ) ‘ 𝑃 ) · ( ( 𝑍 ∘ 𝑆 ) ‘ 𝑄 ) ) · ( 𝐷 ‘ 𝐸 ) ) = ( ( ( 𝑍 ∘ 𝑆 ) ‘ 𝑃 ) · ( ( ( 𝑍 ∘ 𝑆 ) ‘ 𝑄 ) · ( 𝐷 ‘ 𝐸 ) ) ) ) |
| 66 |
4 5
|
cofipsgn |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑃 ∈ 𝐺 ) → ( ( 𝑍 ∘ 𝑆 ) ‘ 𝑃 ) = ( 𝑍 ‘ ( 𝑆 ‘ 𝑃 ) ) ) |
| 67 |
10 12 66
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑍 ∘ 𝑆 ) ‘ 𝑃 ) = ( 𝑍 ‘ ( 𝑆 ‘ 𝑃 ) ) ) |
| 68 |
4 5
|
cofipsgn |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝐺 ) → ( ( 𝑍 ∘ 𝑆 ) ‘ 𝑄 ) = ( 𝑍 ‘ ( 𝑆 ‘ 𝑄 ) ) ) |
| 69 |
10 13 68
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑍 ∘ 𝑆 ) ‘ 𝑄 ) = ( 𝑍 ‘ ( 𝑆 ‘ 𝑄 ) ) ) |
| 70 |
67 69
|
oveq12d |
⊢ ( 𝜑 → ( ( ( 𝑍 ∘ 𝑆 ) ‘ 𝑃 ) · ( ( 𝑍 ∘ 𝑆 ) ‘ 𝑄 ) ) = ( ( 𝑍 ‘ ( 𝑆 ‘ 𝑃 ) ) · ( 𝑍 ‘ ( 𝑆 ‘ 𝑄 ) ) ) ) |
| 71 |
6
|
zrhrhm |
⊢ ( 𝑅 ∈ Ring → 𝑍 ∈ ( ℤring RingHom 𝑅 ) ) |
| 72 |
50 71
|
syl |
⊢ ( 𝜑 → 𝑍 ∈ ( ℤring RingHom 𝑅 ) ) |
| 73 |
|
1z |
⊢ 1 ∈ ℤ |
| 74 |
|
neg1z |
⊢ - 1 ∈ ℤ |
| 75 |
|
prssi |
⊢ ( ( 1 ∈ ℤ ∧ - 1 ∈ ℤ ) → { 1 , - 1 } ⊆ ℤ ) |
| 76 |
73 74 75
|
mp2an |
⊢ { 1 , - 1 } ⊆ ℤ |
| 77 |
4 5
|
psgnran |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑃 ∈ 𝐺 ) → ( 𝑆 ‘ 𝑃 ) ∈ { 1 , - 1 } ) |
| 78 |
10 12 77
|
syl2anc |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝑃 ) ∈ { 1 , - 1 } ) |
| 79 |
76 78
|
sselid |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝑃 ) ∈ ℤ ) |
| 80 |
4 5
|
psgnran |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝐺 ) → ( 𝑆 ‘ 𝑄 ) ∈ { 1 , - 1 } ) |
| 81 |
10 13 80
|
syl2anc |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝑄 ) ∈ { 1 , - 1 } ) |
| 82 |
76 81
|
sselid |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝑄 ) ∈ ℤ ) |
| 83 |
|
zringbas |
⊢ ℤ = ( Base ‘ ℤring ) |
| 84 |
|
zringmulr |
⊢ · = ( .r ‘ ℤring ) |
| 85 |
83 84 7
|
rhmmul |
⊢ ( ( 𝑍 ∈ ( ℤring RingHom 𝑅 ) ∧ ( 𝑆 ‘ 𝑃 ) ∈ ℤ ∧ ( 𝑆 ‘ 𝑄 ) ∈ ℤ ) → ( 𝑍 ‘ ( ( 𝑆 ‘ 𝑃 ) · ( 𝑆 ‘ 𝑄 ) ) ) = ( ( 𝑍 ‘ ( 𝑆 ‘ 𝑃 ) ) · ( 𝑍 ‘ ( 𝑆 ‘ 𝑄 ) ) ) ) |
| 86 |
72 79 82 85
|
syl3anc |
⊢ ( 𝜑 → ( 𝑍 ‘ ( ( 𝑆 ‘ 𝑃 ) · ( 𝑆 ‘ 𝑄 ) ) ) = ( ( 𝑍 ‘ ( 𝑆 ‘ 𝑃 ) ) · ( 𝑍 ‘ ( 𝑆 ‘ 𝑄 ) ) ) ) |
| 87 |
70 86
|
eqtr4d |
⊢ ( 𝜑 → ( ( ( 𝑍 ∘ 𝑆 ) ‘ 𝑃 ) · ( ( 𝑍 ∘ 𝑆 ) ‘ 𝑄 ) ) = ( 𝑍 ‘ ( ( 𝑆 ‘ 𝑃 ) · ( 𝑆 ‘ 𝑄 ) ) ) ) |
| 88 |
87
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( 𝑍 ∘ 𝑆 ) ‘ 𝑃 ) · ( ( 𝑍 ∘ 𝑆 ) ‘ 𝑄 ) ) · ( 𝐷 ‘ 𝐸 ) ) = ( ( 𝑍 ‘ ( ( 𝑆 ‘ 𝑃 ) · ( 𝑆 ‘ 𝑄 ) ) ) · ( 𝐷 ‘ 𝐸 ) ) ) |
| 89 |
65 88
|
eqtr3d |
⊢ ( 𝜑 → ( ( ( 𝑍 ∘ 𝑆 ) ‘ 𝑃 ) · ( ( ( 𝑍 ∘ 𝑆 ) ‘ 𝑄 ) · ( 𝐷 ‘ 𝐸 ) ) ) = ( ( 𝑍 ‘ ( ( 𝑆 ‘ 𝑃 ) · ( 𝑆 ‘ 𝑄 ) ) ) · ( 𝐷 ‘ 𝐸 ) ) ) |
| 90 |
19 48 89
|
3eqtrd |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝑀 ) = ( ( 𝑍 ‘ ( ( 𝑆 ‘ 𝑃 ) · ( 𝑆 ‘ 𝑄 ) ) ) · ( 𝐷 ‘ 𝐸 ) ) ) |