| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mdetpmtr.a |  |-  A = ( N Mat R ) | 
						
							| 2 |  | mdetpmtr.b |  |-  B = ( Base ` A ) | 
						
							| 3 |  | mdetpmtr.d |  |-  D = ( N maDet R ) | 
						
							| 4 |  | mdetpmtr.g |  |-  G = ( Base ` ( SymGrp ` N ) ) | 
						
							| 5 |  | mdetpmtr.s |  |-  S = ( pmSgn ` N ) | 
						
							| 6 |  | mdetpmtr.z |  |-  Z = ( ZRHom ` R ) | 
						
							| 7 |  | mdetpmtr.t |  |-  .x. = ( .r ` R ) | 
						
							| 8 |  | mdetpmtr12.e |  |-  E = ( i e. N , j e. N |-> ( ( P ` i ) M ( Q ` j ) ) ) | 
						
							| 9 |  | mdetmptr12.r |  |-  ( ph -> R e. CRing ) | 
						
							| 10 |  | mdetmptr12.n |  |-  ( ph -> N e. Fin ) | 
						
							| 11 |  | mdetmptr12.m |  |-  ( ph -> M e. B ) | 
						
							| 12 |  | mdetmptr12.p |  |-  ( ph -> P e. G ) | 
						
							| 13 |  | mdetmptr12.q |  |-  ( ph -> Q e. G ) | 
						
							| 14 |  | fveq2 |  |-  ( k = i -> ( P ` k ) = ( P ` i ) ) | 
						
							| 15 | 14 | oveq1d |  |-  ( k = i -> ( ( P ` k ) M l ) = ( ( P ` i ) M l ) ) | 
						
							| 16 |  | oveq2 |  |-  ( l = j -> ( ( P ` i ) M l ) = ( ( P ` i ) M j ) ) | 
						
							| 17 | 15 16 | cbvmpov |  |-  ( k e. N , l e. N |-> ( ( P ` k ) M l ) ) = ( i e. N , j e. N |-> ( ( P ` i ) M j ) ) | 
						
							| 18 | 1 2 3 4 5 6 7 17 | mdetpmtr1 |  |-  ( ( ( R e. CRing /\ N e. Fin ) /\ ( M e. B /\ P e. G ) ) -> ( D ` M ) = ( ( ( Z o. S ) ` P ) .x. ( D ` ( k e. N , l e. N |-> ( ( P ` k ) M l ) ) ) ) ) | 
						
							| 19 | 9 10 11 12 18 | syl22anc |  |-  ( ph -> ( D ` M ) = ( ( ( Z o. S ) ` P ) .x. ( D ` ( k e. N , l e. N |-> ( ( P ` k ) M l ) ) ) ) ) | 
						
							| 20 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 21 | 12 | 3ad2ant1 |  |-  ( ( ph /\ k e. N /\ l e. N ) -> P e. G ) | 
						
							| 22 |  | simp2 |  |-  ( ( ph /\ k e. N /\ l e. N ) -> k e. N ) | 
						
							| 23 |  | eqid |  |-  ( SymGrp ` N ) = ( SymGrp ` N ) | 
						
							| 24 | 23 4 | symgfv |  |-  ( ( P e. G /\ k e. N ) -> ( P ` k ) e. N ) | 
						
							| 25 | 21 22 24 | syl2anc |  |-  ( ( ph /\ k e. N /\ l e. N ) -> ( P ` k ) e. N ) | 
						
							| 26 |  | simp3 |  |-  ( ( ph /\ k e. N /\ l e. N ) -> l e. N ) | 
						
							| 27 | 11 | 3ad2ant1 |  |-  ( ( ph /\ k e. N /\ l e. N ) -> M e. B ) | 
						
							| 28 | 1 20 2 25 26 27 | matecld |  |-  ( ( ph /\ k e. N /\ l e. N ) -> ( ( P ` k ) M l ) e. ( Base ` R ) ) | 
						
							| 29 | 1 20 2 10 9 28 | matbas2d |  |-  ( ph -> ( k e. N , l e. N |-> ( ( P ` k ) M l ) ) e. B ) | 
						
							| 30 |  | eqid |  |-  ( i e. N , j e. N |-> ( i ( k e. N , l e. N |-> ( ( P ` k ) M l ) ) ( Q ` j ) ) ) = ( i e. N , j e. N |-> ( i ( k e. N , l e. N |-> ( ( P ` k ) M l ) ) ( Q ` j ) ) ) | 
						
							| 31 | 1 2 3 4 5 6 7 30 | mdetpmtr2 |  |-  ( ( ( R e. CRing /\ N e. Fin ) /\ ( ( k e. N , l e. N |-> ( ( P ` k ) M l ) ) e. B /\ Q e. G ) ) -> ( D ` ( k e. N , l e. N |-> ( ( P ` k ) M l ) ) ) = ( ( ( Z o. S ) ` Q ) .x. ( D ` ( i e. N , j e. N |-> ( i ( k e. N , l e. N |-> ( ( P ` k ) M l ) ) ( Q ` j ) ) ) ) ) ) | 
						
							| 32 | 9 10 29 13 31 | syl22anc |  |-  ( ph -> ( D ` ( k e. N , l e. N |-> ( ( P ` k ) M l ) ) ) = ( ( ( Z o. S ) ` Q ) .x. ( D ` ( i e. N , j e. N |-> ( i ( k e. N , l e. N |-> ( ( P ` k ) M l ) ) ( Q ` j ) ) ) ) ) ) | 
						
							| 33 |  | simp2 |  |-  ( ( ph /\ i e. N /\ j e. N ) -> i e. N ) | 
						
							| 34 | 13 | 3ad2ant1 |  |-  ( ( ph /\ i e. N /\ j e. N ) -> Q e. G ) | 
						
							| 35 |  | simp3 |  |-  ( ( ph /\ i e. N /\ j e. N ) -> j e. N ) | 
						
							| 36 | 23 4 | symgfv |  |-  ( ( Q e. G /\ j e. N ) -> ( Q ` j ) e. N ) | 
						
							| 37 | 34 35 36 | syl2anc |  |-  ( ( ph /\ i e. N /\ j e. N ) -> ( Q ` j ) e. N ) | 
						
							| 38 |  | oveq2 |  |-  ( l = ( Q ` j ) -> ( ( P ` i ) M l ) = ( ( P ` i ) M ( Q ` j ) ) ) | 
						
							| 39 |  | eqid |  |-  ( k e. N , l e. N |-> ( ( P ` k ) M l ) ) = ( k e. N , l e. N |-> ( ( P ` k ) M l ) ) | 
						
							| 40 |  | ovex |  |-  ( ( P ` i ) M ( Q ` j ) ) e. _V | 
						
							| 41 | 15 38 39 40 | ovmpo |  |-  ( ( i e. N /\ ( Q ` j ) e. N ) -> ( i ( k e. N , l e. N |-> ( ( P ` k ) M l ) ) ( Q ` j ) ) = ( ( P ` i ) M ( Q ` j ) ) ) | 
						
							| 42 | 33 37 41 | syl2anc |  |-  ( ( ph /\ i e. N /\ j e. N ) -> ( i ( k e. N , l e. N |-> ( ( P ` k ) M l ) ) ( Q ` j ) ) = ( ( P ` i ) M ( Q ` j ) ) ) | 
						
							| 43 | 42 | mpoeq3dva |  |-  ( ph -> ( i e. N , j e. N |-> ( i ( k e. N , l e. N |-> ( ( P ` k ) M l ) ) ( Q ` j ) ) ) = ( i e. N , j e. N |-> ( ( P ` i ) M ( Q ` j ) ) ) ) | 
						
							| 44 | 8 43 | eqtr4id |  |-  ( ph -> E = ( i e. N , j e. N |-> ( i ( k e. N , l e. N |-> ( ( P ` k ) M l ) ) ( Q ` j ) ) ) ) | 
						
							| 45 | 44 | fveq2d |  |-  ( ph -> ( D ` E ) = ( D ` ( i e. N , j e. N |-> ( i ( k e. N , l e. N |-> ( ( P ` k ) M l ) ) ( Q ` j ) ) ) ) ) | 
						
							| 46 | 45 | oveq2d |  |-  ( ph -> ( ( ( Z o. S ) ` Q ) .x. ( D ` E ) ) = ( ( ( Z o. S ) ` Q ) .x. ( D ` ( i e. N , j e. N |-> ( i ( k e. N , l e. N |-> ( ( P ` k ) M l ) ) ( Q ` j ) ) ) ) ) ) | 
						
							| 47 | 32 46 | eqtr4d |  |-  ( ph -> ( D ` ( k e. N , l e. N |-> ( ( P ` k ) M l ) ) ) = ( ( ( Z o. S ) ` Q ) .x. ( D ` E ) ) ) | 
						
							| 48 | 47 | oveq2d |  |-  ( ph -> ( ( ( Z o. S ) ` P ) .x. ( D ` ( k e. N , l e. N |-> ( ( P ` k ) M l ) ) ) ) = ( ( ( Z o. S ) ` P ) .x. ( ( ( Z o. S ) ` Q ) .x. ( D ` E ) ) ) ) | 
						
							| 49 |  | crngring |  |-  ( R e. CRing -> R e. Ring ) | 
						
							| 50 | 9 49 | syl |  |-  ( ph -> R e. Ring ) | 
						
							| 51 | 4 5 6 | zrhcopsgnelbas |  |-  ( ( R e. Ring /\ N e. Fin /\ P e. G ) -> ( ( Z o. S ) ` P ) e. ( Base ` R ) ) | 
						
							| 52 | 50 10 12 51 | syl3anc |  |-  ( ph -> ( ( Z o. S ) ` P ) e. ( Base ` R ) ) | 
						
							| 53 | 4 5 6 | zrhcopsgnelbas |  |-  ( ( R e. Ring /\ N e. Fin /\ Q e. G ) -> ( ( Z o. S ) ` Q ) e. ( Base ` R ) ) | 
						
							| 54 | 50 10 13 53 | syl3anc |  |-  ( ph -> ( ( Z o. S ) ` Q ) e. ( Base ` R ) ) | 
						
							| 55 | 12 | 3ad2ant1 |  |-  ( ( ph /\ i e. N /\ j e. N ) -> P e. G ) | 
						
							| 56 | 23 4 | symgfv |  |-  ( ( P e. G /\ i e. N ) -> ( P ` i ) e. N ) | 
						
							| 57 | 55 33 56 | syl2anc |  |-  ( ( ph /\ i e. N /\ j e. N ) -> ( P ` i ) e. N ) | 
						
							| 58 | 11 | 3ad2ant1 |  |-  ( ( ph /\ i e. N /\ j e. N ) -> M e. B ) | 
						
							| 59 | 1 20 2 57 37 58 | matecld |  |-  ( ( ph /\ i e. N /\ j e. N ) -> ( ( P ` i ) M ( Q ` j ) ) e. ( Base ` R ) ) | 
						
							| 60 | 1 20 2 10 9 59 | matbas2d |  |-  ( ph -> ( i e. N , j e. N |-> ( ( P ` i ) M ( Q ` j ) ) ) e. B ) | 
						
							| 61 | 8 60 | eqeltrid |  |-  ( ph -> E e. B ) | 
						
							| 62 | 3 1 2 20 | mdetcl |  |-  ( ( R e. CRing /\ E e. B ) -> ( D ` E ) e. ( Base ` R ) ) | 
						
							| 63 | 9 61 62 | syl2anc |  |-  ( ph -> ( D ` E ) e. ( Base ` R ) ) | 
						
							| 64 | 20 7 | ringass |  |-  ( ( R e. Ring /\ ( ( ( Z o. S ) ` P ) e. ( Base ` R ) /\ ( ( Z o. S ) ` Q ) e. ( Base ` R ) /\ ( D ` E ) e. ( Base ` R ) ) ) -> ( ( ( ( Z o. S ) ` P ) .x. ( ( Z o. S ) ` Q ) ) .x. ( D ` E ) ) = ( ( ( Z o. S ) ` P ) .x. ( ( ( Z o. S ) ` Q ) .x. ( D ` E ) ) ) ) | 
						
							| 65 | 50 52 54 63 64 | syl13anc |  |-  ( ph -> ( ( ( ( Z o. S ) ` P ) .x. ( ( Z o. S ) ` Q ) ) .x. ( D ` E ) ) = ( ( ( Z o. S ) ` P ) .x. ( ( ( Z o. S ) ` Q ) .x. ( D ` E ) ) ) ) | 
						
							| 66 | 4 5 | cofipsgn |  |-  ( ( N e. Fin /\ P e. G ) -> ( ( Z o. S ) ` P ) = ( Z ` ( S ` P ) ) ) | 
						
							| 67 | 10 12 66 | syl2anc |  |-  ( ph -> ( ( Z o. S ) ` P ) = ( Z ` ( S ` P ) ) ) | 
						
							| 68 | 4 5 | cofipsgn |  |-  ( ( N e. Fin /\ Q e. G ) -> ( ( Z o. S ) ` Q ) = ( Z ` ( S ` Q ) ) ) | 
						
							| 69 | 10 13 68 | syl2anc |  |-  ( ph -> ( ( Z o. S ) ` Q ) = ( Z ` ( S ` Q ) ) ) | 
						
							| 70 | 67 69 | oveq12d |  |-  ( ph -> ( ( ( Z o. S ) ` P ) .x. ( ( Z o. S ) ` Q ) ) = ( ( Z ` ( S ` P ) ) .x. ( Z ` ( S ` Q ) ) ) ) | 
						
							| 71 | 6 | zrhrhm |  |-  ( R e. Ring -> Z e. ( ZZring RingHom R ) ) | 
						
							| 72 | 50 71 | syl |  |-  ( ph -> Z e. ( ZZring RingHom R ) ) | 
						
							| 73 |  | 1z |  |-  1 e. ZZ | 
						
							| 74 |  | neg1z |  |-  -u 1 e. ZZ | 
						
							| 75 |  | prssi |  |-  ( ( 1 e. ZZ /\ -u 1 e. ZZ ) -> { 1 , -u 1 } C_ ZZ ) | 
						
							| 76 | 73 74 75 | mp2an |  |-  { 1 , -u 1 } C_ ZZ | 
						
							| 77 | 4 5 | psgnran |  |-  ( ( N e. Fin /\ P e. G ) -> ( S ` P ) e. { 1 , -u 1 } ) | 
						
							| 78 | 10 12 77 | syl2anc |  |-  ( ph -> ( S ` P ) e. { 1 , -u 1 } ) | 
						
							| 79 | 76 78 | sselid |  |-  ( ph -> ( S ` P ) e. ZZ ) | 
						
							| 80 | 4 5 | psgnran |  |-  ( ( N e. Fin /\ Q e. G ) -> ( S ` Q ) e. { 1 , -u 1 } ) | 
						
							| 81 | 10 13 80 | syl2anc |  |-  ( ph -> ( S ` Q ) e. { 1 , -u 1 } ) | 
						
							| 82 | 76 81 | sselid |  |-  ( ph -> ( S ` Q ) e. ZZ ) | 
						
							| 83 |  | zringbas |  |-  ZZ = ( Base ` ZZring ) | 
						
							| 84 |  | zringmulr |  |-  x. = ( .r ` ZZring ) | 
						
							| 85 | 83 84 7 | rhmmul |  |-  ( ( Z e. ( ZZring RingHom R ) /\ ( S ` P ) e. ZZ /\ ( S ` Q ) e. ZZ ) -> ( Z ` ( ( S ` P ) x. ( S ` Q ) ) ) = ( ( Z ` ( S ` P ) ) .x. ( Z ` ( S ` Q ) ) ) ) | 
						
							| 86 | 72 79 82 85 | syl3anc |  |-  ( ph -> ( Z ` ( ( S ` P ) x. ( S ` Q ) ) ) = ( ( Z ` ( S ` P ) ) .x. ( Z ` ( S ` Q ) ) ) ) | 
						
							| 87 | 70 86 | eqtr4d |  |-  ( ph -> ( ( ( Z o. S ) ` P ) .x. ( ( Z o. S ) ` Q ) ) = ( Z ` ( ( S ` P ) x. ( S ` Q ) ) ) ) | 
						
							| 88 | 87 | oveq1d |  |-  ( ph -> ( ( ( ( Z o. S ) ` P ) .x. ( ( Z o. S ) ` Q ) ) .x. ( D ` E ) ) = ( ( Z ` ( ( S ` P ) x. ( S ` Q ) ) ) .x. ( D ` E ) ) ) | 
						
							| 89 | 65 88 | eqtr3d |  |-  ( ph -> ( ( ( Z o. S ) ` P ) .x. ( ( ( Z o. S ) ` Q ) .x. ( D ` E ) ) ) = ( ( Z ` ( ( S ` P ) x. ( S ` Q ) ) ) .x. ( D ` E ) ) ) | 
						
							| 90 | 19 48 89 | 3eqtrd |  |-  ( ph -> ( D ` M ) = ( ( Z ` ( ( S ` P ) x. ( S ` Q ) ) ) .x. ( D ` E ) ) ) |