| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mdetlap1.a |
|- A = ( N Mat R ) |
| 2 |
|
mdetlap1.b |
|- B = ( Base ` A ) |
| 3 |
|
mdetlap1.d |
|- D = ( N maDet R ) |
| 4 |
|
mdetlap1.k |
|- K = ( N maAdju R ) |
| 5 |
|
mdetlap1.t |
|- .x. = ( .r ` R ) |
| 6 |
|
simp2 |
|- ( ( R e. CRing /\ M e. B /\ I e. N ) -> M e. B ) |
| 7 |
1 2
|
matmpo |
|- ( M e. B -> M = ( i e. N , j e. N |-> ( i M j ) ) ) |
| 8 |
|
eqid |
|- N = N |
| 9 |
|
simpr |
|- ( ( T. /\ i = I ) -> i = I ) |
| 10 |
9
|
eqcomd |
|- ( ( T. /\ i = I ) -> I = i ) |
| 11 |
10
|
oveq1d |
|- ( ( T. /\ i = I ) -> ( I M j ) = ( i M j ) ) |
| 12 |
|
eqidd |
|- ( ( T. /\ -. i = I ) -> ( i M j ) = ( i M j ) ) |
| 13 |
11 12
|
ifeqda |
|- ( T. -> if ( i = I , ( I M j ) , ( i M j ) ) = ( i M j ) ) |
| 14 |
13
|
mptru |
|- if ( i = I , ( I M j ) , ( i M j ) ) = ( i M j ) |
| 15 |
8 8 14
|
mpoeq123i |
|- ( i e. N , j e. N |-> if ( i = I , ( I M j ) , ( i M j ) ) ) = ( i e. N , j e. N |-> ( i M j ) ) |
| 16 |
7 15
|
eqtr4di |
|- ( M e. B -> M = ( i e. N , j e. N |-> if ( i = I , ( I M j ) , ( i M j ) ) ) ) |
| 17 |
16
|
fveq2d |
|- ( M e. B -> ( D ` M ) = ( D ` ( i e. N , j e. N |-> if ( i = I , ( I M j ) , ( i M j ) ) ) ) ) |
| 18 |
6 17
|
syl |
|- ( ( R e. CRing /\ M e. B /\ I e. N ) -> ( D ` M ) = ( D ` ( i e. N , j e. N |-> if ( i = I , ( I M j ) , ( i M j ) ) ) ) ) |
| 19 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 20 |
|
simp1 |
|- ( ( R e. CRing /\ M e. B /\ I e. N ) -> R e. CRing ) |
| 21 |
|
simpl3 |
|- ( ( ( R e. CRing /\ M e. B /\ I e. N ) /\ j e. N ) -> I e. N ) |
| 22 |
|
simpr |
|- ( ( ( R e. CRing /\ M e. B /\ I e. N ) /\ j e. N ) -> j e. N ) |
| 23 |
6 2
|
eleqtrdi |
|- ( ( R e. CRing /\ M e. B /\ I e. N ) -> M e. ( Base ` A ) ) |
| 24 |
23
|
adantr |
|- ( ( ( R e. CRing /\ M e. B /\ I e. N ) /\ j e. N ) -> M e. ( Base ` A ) ) |
| 25 |
1 19
|
matecl |
|- ( ( I e. N /\ j e. N /\ M e. ( Base ` A ) ) -> ( I M j ) e. ( Base ` R ) ) |
| 26 |
21 22 24 25
|
syl3anc |
|- ( ( ( R e. CRing /\ M e. B /\ I e. N ) /\ j e. N ) -> ( I M j ) e. ( Base ` R ) ) |
| 27 |
|
simp3 |
|- ( ( R e. CRing /\ M e. B /\ I e. N ) -> I e. N ) |
| 28 |
1 4 2 3 5 19 6 20 26 27
|
madugsum |
|- ( ( R e. CRing /\ M e. B /\ I e. N ) -> ( R gsum ( j e. N |-> ( ( I M j ) .x. ( j ( K ` M ) I ) ) ) ) = ( D ` ( i e. N , j e. N |-> if ( i = I , ( I M j ) , ( i M j ) ) ) ) ) |
| 29 |
18 28
|
eqtr4d |
|- ( ( R e. CRing /\ M e. B /\ I e. N ) -> ( D ` M ) = ( R gsum ( j e. N |-> ( ( I M j ) .x. ( j ( K ` M ) I ) ) ) ) ) |