| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mdetlap1.a |  |-  A = ( N Mat R ) | 
						
							| 2 |  | mdetlap1.b |  |-  B = ( Base ` A ) | 
						
							| 3 |  | mdetlap1.d |  |-  D = ( N maDet R ) | 
						
							| 4 |  | mdetlap1.k |  |-  K = ( N maAdju R ) | 
						
							| 5 |  | mdetlap1.t |  |-  .x. = ( .r ` R ) | 
						
							| 6 |  | simp2 |  |-  ( ( R e. CRing /\ M e. B /\ I e. N ) -> M e. B ) | 
						
							| 7 | 1 2 | matmpo |  |-  ( M e. B -> M = ( i e. N , j e. N |-> ( i M j ) ) ) | 
						
							| 8 |  | eqid |  |-  N = N | 
						
							| 9 |  | simpr |  |-  ( ( T. /\ i = I ) -> i = I ) | 
						
							| 10 | 9 | eqcomd |  |-  ( ( T. /\ i = I ) -> I = i ) | 
						
							| 11 | 10 | oveq1d |  |-  ( ( T. /\ i = I ) -> ( I M j ) = ( i M j ) ) | 
						
							| 12 |  | eqidd |  |-  ( ( T. /\ -. i = I ) -> ( i M j ) = ( i M j ) ) | 
						
							| 13 | 11 12 | ifeqda |  |-  ( T. -> if ( i = I , ( I M j ) , ( i M j ) ) = ( i M j ) ) | 
						
							| 14 | 13 | mptru |  |-  if ( i = I , ( I M j ) , ( i M j ) ) = ( i M j ) | 
						
							| 15 | 8 8 14 | mpoeq123i |  |-  ( i e. N , j e. N |-> if ( i = I , ( I M j ) , ( i M j ) ) ) = ( i e. N , j e. N |-> ( i M j ) ) | 
						
							| 16 | 7 15 | eqtr4di |  |-  ( M e. B -> M = ( i e. N , j e. N |-> if ( i = I , ( I M j ) , ( i M j ) ) ) ) | 
						
							| 17 | 16 | fveq2d |  |-  ( M e. B -> ( D ` M ) = ( D ` ( i e. N , j e. N |-> if ( i = I , ( I M j ) , ( i M j ) ) ) ) ) | 
						
							| 18 | 6 17 | syl |  |-  ( ( R e. CRing /\ M e. B /\ I e. N ) -> ( D ` M ) = ( D ` ( i e. N , j e. N |-> if ( i = I , ( I M j ) , ( i M j ) ) ) ) ) | 
						
							| 19 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 20 |  | simp1 |  |-  ( ( R e. CRing /\ M e. B /\ I e. N ) -> R e. CRing ) | 
						
							| 21 |  | simpl3 |  |-  ( ( ( R e. CRing /\ M e. B /\ I e. N ) /\ j e. N ) -> I e. N ) | 
						
							| 22 |  | simpr |  |-  ( ( ( R e. CRing /\ M e. B /\ I e. N ) /\ j e. N ) -> j e. N ) | 
						
							| 23 | 6 2 | eleqtrdi |  |-  ( ( R e. CRing /\ M e. B /\ I e. N ) -> M e. ( Base ` A ) ) | 
						
							| 24 | 23 | adantr |  |-  ( ( ( R e. CRing /\ M e. B /\ I e. N ) /\ j e. N ) -> M e. ( Base ` A ) ) | 
						
							| 25 | 1 19 | matecl |  |-  ( ( I e. N /\ j e. N /\ M e. ( Base ` A ) ) -> ( I M j ) e. ( Base ` R ) ) | 
						
							| 26 | 21 22 24 25 | syl3anc |  |-  ( ( ( R e. CRing /\ M e. B /\ I e. N ) /\ j e. N ) -> ( I M j ) e. ( Base ` R ) ) | 
						
							| 27 |  | simp3 |  |-  ( ( R e. CRing /\ M e. B /\ I e. N ) -> I e. N ) | 
						
							| 28 | 1 4 2 3 5 19 6 20 26 27 | madugsum |  |-  ( ( R e. CRing /\ M e. B /\ I e. N ) -> ( R gsum ( j e. N |-> ( ( I M j ) .x. ( j ( K ` M ) I ) ) ) ) = ( D ` ( i e. N , j e. N |-> if ( i = I , ( I M j ) , ( i M j ) ) ) ) ) | 
						
							| 29 | 18 28 | eqtr4d |  |-  ( ( R e. CRing /\ M e. B /\ I e. N ) -> ( D ` M ) = ( R gsum ( j e. N |-> ( ( I M j ) .x. ( j ( K ` M ) I ) ) ) ) ) |